3,700 research outputs found

    Exact Multifractal Spectra for Arbitrary Laplacian Random Walks

    Full text link
    Iterated conformal mappings are used to obtain exact multifractal spectra of the harmonic measure for arbitrary Laplacian random walks in two dimensions. Separate spectra are found to describe scaling of the growth measure in time, of the measure near the growth tip, and of the measure away from the growth tip. The spectra away from the tip coincide with those of conformally invariant equilibrium systems with arbitrary central charge c1c\leq 1, with cc related to the particular walk chosen, while the scaling in time and near the tip cannot be obtained from the equilibrium properties.Comment: 4 pages, 3 figures; references added, minor correction

    Community Detection as an Inference Problem

    Full text link
    We express community detection as an inference problem of determining the most likely arrangement of communities. We then apply belief propagation and mean-field theory to this problem, and show that this leads to fast, accurate algorithms for community detection.Comment: 4 pages, 2 figure

    QED corrections to isospin-related decay rates of charged and neutral B mesons

    Full text link
    We estimate the isospin-violating QED radiative corrections to the charged-to-neutral ratios of the decay rates for B^+ and B^0 in non-leptonic B meson decays. In particular, these corrections are potentially important for precision measurement of the charged-to-neutral production ratio of B meson in e^+e^- annihilation. We calculate explicitly the QED corrections to the ratios of two different types of decay rates \Gamma(B^+ \to J/\psi K^+)/\Gamma(B^0 \to J/\psi K^0) and \Gamma(B^+ \to D^+_S \bar{D^0})/\Gamma(B^0 \to D^+_S D^-) taking into account the form factors of the mesons based on the vector meson dominance model, and compare them with the results obtained for the point-like mesons.Comment: 7 pages, 9 eps figure

    Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems

    Get PDF
    Gapped ground states of quantum spin systems have been referred to in the physics literature as being `in the same phase' if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on s[0,1]s \in [0,1], such that for each ss, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that 'belong to the same phase' are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an ss-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings' 'quasi-adiabatic evolution' technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the {\em spectral flow}, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s),0s1H(s), 0\leq s\leq 1.Comment: Updated acknowledgments and new email address of S

    Uniformity of V minus Near Infrared Color Evolution of Type Ia Supernovae, and Implications for Host Galaxy Extinction Determination

    Full text link
    From an analysis of SNe 1972E, 1980N, 1981B, 1981D, 1983R, 1998bu, 1999cl, and 1999cp we find that the intrinsic V-K colors of Type Ia SNe with multi-color light curve shape (MLCS) parameter -0.4 < Delta < +0.2 suggest a uniform color curve. V-K colors become bluer linearly with time from roughly one week before B-band maximum until one week after maximum, after which they redden linearly until four weeks after maximum. V-H colors exhibit very similar color evolution. V-J colors exhibit slightly more complex evolution, with greater scatter. The existence of V minus near infrared color relations allows the construction of near infrared light curve templates that are an improvement on those of Elias et al. (1985). We provide optical BVRI and infrared JHK photometry of the Type Ia supernovae 1999aa, 1999cl, and 1999cp. SN 1999aa is an overluminous "slow decliner" (with Delta = -0.47 mag). SN 1999cp is a moderately bright SN unreddened in its host. SN 1999cl is extremely reddened in its host. The V minus near infrared colors of SN 1999cl yield A_V = 2.01 +/- 0.11 mag. This leads to a distance for its host galaxy (M 88) in agreement with other distance measurements for members of the Virgo cluster.Comment: 57 pages, 13 postscript figures, to appear in the August 20, 2000, issue of the Astrophysical Journal. Contains updated references and a number of minor corrections dealt with when page proofs were correcte

    Physical consequences of P\neqNP and the DMRG-annealing conjecture

    Full text link
    Computational complexity theory contains a corpus of theorems and conjectures regarding the time a Turing machine will need to solve certain types of problems as a function of the input size. Nature {\em need not} be a Turing machine and, thus, these theorems do not apply directly to it. But {\em classical simulations} of physical processes are programs running on Turing machines and, as such, are subject to them. In this work, computational complexity theory is applied to classical simulations of systems performing an adiabatic quantum computation (AQC), based on an annealed extension of the density matrix renormalization group (DMRG). We conjecture that the computational time required for those classical simulations is controlled solely by the {\em maximal entanglement} found during the process. Thus, lower bounds on the growth of entanglement with the system size can be provided. In some cases, quantum phase transitions can be predicted to take place in certain inhomogeneous systems. Concretely, physical conclusions are drawn from the assumption that the complexity classes {\bf P} and {\bf NP} differ. As a by-product, an alternative measure of entanglement is proposed which, via Chebyshev's inequality, allows to establish strict bounds on the required computational time.Comment: Accepted for publication in JSTA

    Interference of Spontaneous Emission of Light from two Solid-State Atomic Ensembles

    Full text link
    We report an interference experiment of spontaneous emission of light from two distant solid-state ensembles of atoms that are coherently excited by a short laser pulse. The ensembles are Erbium ions doped into two LiNbO3 crystals with channel waveguides, which are placed in the two arms of a Mach-Zehnder interferometer. The light that is spontaneously emitted after the excitation pulse shows first-order interference. By a strong collective enhancement of the emission, the atoms behave as ideal two-level quantum systems and no which-path information is left in the atomic ensembles after emission of a photon. This results in a high fringe visibility of 95%, which implies that the observed spontaneous emission is highly coherent
    corecore