29 research outputs found

    Geochemistry of european bottled water

    No full text
    In Europe, ca. 1900 "mineral water" brands are officially registered and bottled for drinking. Bottled water is groundwater and is rapidly developing into the main supply of drinking water for the general population of large parts of Europe. This book is the first state of the art overview of the chemistry of groundwaters from 40 European countries from Portugal to Russia, measured on 1785 bottled water samples from 1247 wells representing 884 locations plus additional 500 tap water samples acquired in 2008 by the network of EuroGeoSurveys experts all across Europe. In contrast to previously available data sets, all chemical data were measured in a single laboratory, under strict quality control with high internal and external reproducibility, affording a single high quality, internally consistent dataset. More than 70 parameters were determined on every sample using state of the art analytical techniques with ultra low detection limits (ICPMS, ICPOES, IC) at a single hydrochemical lab facility. Because of the wide geographical distribution of the water sources, the bottled mineral, drinking and tap waters characterized herein may be used for obtaining a first estimate of "groundwater geochemistry" at the scale of the European Continent, a dataset previously unavailable in this completeness, quality and coverage. This new data set allows, for the first time, to present a comprehensive internally consistent, overview of the natural distribution and variation of the determined chemical elements and additional state parameters of groundwater at the European scale. Most elements show a very wide range \u2013 usually 3 to 4 but up to 7 orders of magnitude \u2013 of natural variation of their concentration. Data are interpreted in terms of their origin, considering hydrochemical parameters, such as the influence of soil, vegetation cover and mixing with deep waters, as well as other factors (bottling effects, leaching from bottles). Chapters are devoted to comparing the bottled water data with those of European tap water and previously published datasets and discussing the implications of water chemistry for health. The authors also provide an overview of the legal framework, that any bottled water sold in the European Union must comply with. It includes a comprehensive compilation of current drinking water action levels in European countries, limiting values of the European Drinking/Mineral/Natural Mineral Water directives (1998/83/EC, 2003/40/EC, 2009/54/EC) and legislation in effect in 26 individual European Countries, and for comparison those of the FAO and in effect in the US (EPA, maximum contaminant level)

    Mercury in European agricultural and grazing land soils

    No full text
    Agricultural (Ap, Ap-horizon, 0–20 cm) and grazing land soil samples (Gr, 0–10 cm) were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site/2500 km2. The resulting more than 2 x 2000 soil samples were air dried, sieved to <2 mm and analysed for their Hg concentrations following an aqua regia extraction. Median concentrations for Hg are 0.030 mg/kg (range: <0.003–1.56 mg/kg) for the Ap samples and 0.035 mg/kg (range: <0.003–3.12 mg/kg) for the Gr samples. Only 5 Ap and 10 Gr samples returned Hg concentrations above 1 mg/kg. In the geochemical maps the continental-scale distribution of the element is clearly dominated by geology. Climate exerts an important influence. Mercury accumulates in those areas of northern Europe where a wet and cold climate favours the build-up of soil organic material. Typical anthropogenic sources like coal-fired power plants, waste incinerators, chlor-alkali plants, metal smelters and urban agglomerations are hardly visible at continental scales but can have a major impact at the local-scale

    Arsenic in agricultural and grazing land soils of Europe

    No full text
    Arsenic concentrations are reported for the <2 mm fraction of ca. 2200 soil samples each from agricultural (Ap horizon, 0\u201320 cm) and grazing land (Gr, 0\u201310 cm), covering western Europe at a sample density of 1 site/2500 km2. Median As concentrations in an aqua regia extraction determined by inductively coupled plasma emission mass spectrometer (ICP-MS) were 5.7 mg/kg for the Ap samples and 5.8 mg/kg for the Gr samples. The median for the total As concentration as determined by X-ray fluorescence spectrometry (XRF) was 7 mg/kg in both soil materials. Maps of the As distribution for both land-use types (Ap and Gr) show a very similar geographical distribution. The dominant feature in both maps is the southern margin of the former glacial cover seen in the form of a sharp boundary between northern and southern European As concentrations. In fact, the median As concentration in the agricultural soils of southern Europe was found to be more than 3-fold higher than in those of northern Europe (Ap: aqua regia: 2.5 vs. 8.0 mg/kg; total: 3 vs. 10 mg/kg). Most of the As anomalies on the maps can be directly linked to geology (ore occurrences, As-rich rock types). However, some features have an anthropogenic origin. The new data define the geochemical background of As in agricultural soils at the European scale
    corecore