28,563 research outputs found

    Promoting resilience in occupational therapy rducation, a scoping literature review

    Get PDF
    Psychological and emotional resilience are important Occupational Therapy (OT) graduate skills. Occupational Therapists often embark on varied careers in highly demanding and challenging work environments. Theoretically, teaching and learning resilience during training affords protective advantages including safeguarding effects, which promote wellness and a sense of “I can do this, I will survive”. However, OT educators face significant challenges knowing how best to promote resilience through self-directed learning (SDL) approaches. In the UK, there is a strong focal shift towards producing resilient, autonomous life-long learners.  This review was undertaken to inform current education practices in the field

    Water Vapour Effects in Mass Measurement

    Full text link
    Water vapour inside the mass comparator enclosure is a critical parameter. In fact, fluctuations of this parameter during mass weighing can lead to errors in the determination of an unknown mass. To control that, a proposal method is given and tested. Preliminary results of our observation of water vapour sorption and desorption processes from walls and mass standard are reported

    Constraints on a new alternative model to dark energy

    Full text link
    The recent type Ia supernova data suggest that the universe is accelerating now and decelerated in recent past. This may provide the evidence that the standard Friedmann equation needs to be modified. We analyze in detail a new model in the context of modified Friedmann equation using the supernova data published by the High-zz Supernova Search Team and the Supernova Cosmology Project. The new model explains recent acceleration and past deceleration. Furthermore, the new model also gives a decelerated universe in the future.Comment: 12 pages, 5 figures, use ws-ijmpd, minor changes made. In the new version, a detailed derivation of the model is give

    An Optimal Algorithm for the Maximum-Density Segment Problem

    Full text link
    We address a fundamental problem arising from analysis of biomolecular sequences. The input consists of two numbers wmin⁥w_{\min} and wmax⁥w_{\max} and a sequence SS of nn number pairs (ai,wi)(a_i,w_i) with wi>0w_i>0. Let {\em segment} S(i,j)S(i,j) of SS be the consecutive subsequence of SS between indices ii and jj. The {\em density} of S(i,j)S(i,j) is d(i,j)=(ai+ai+1+...+aj)/(wi+wi+1+...+wj)d(i,j)=(a_i+a_{i+1}+...+a_j)/(w_i+w_{i+1}+...+w_j). The {\em maximum-density segment problem} is to find a maximum-density segment over all segments S(i,j)S(i,j) with wmin⁥≀wi+wi+1+...+wj≀wmax⁥w_{\min}\leq w_i+w_{i+1}+...+w_j \leq w_{\max}. The best previously known algorithm for the problem, due to Goldwasser, Kao, and Lu, runs in O(nlog⁥(wmax⁡−wmin⁥+1))O(n\log(w_{\max}-w_{\min}+1)) time. In the present paper, we solve the problem in O(n) time. Our approach bypasses the complicated {\em right-skew decomposition}, introduced by Lin, Jiang, and Chao. As a result, our algorithm has the capability to process the input sequence in an online manner, which is an important feature for dealing with genome-scale sequences. Moreover, for a type of input sequences SS representable in O(m)O(m) space, we show how to exploit the sparsity of SS and solve the maximum-density segment problem for SS in O(m)O(m) time.Comment: 15 pages, 12 figures, an early version of this paper was presented at 11th Annual European Symposium on Algorithms (ESA 2003), Budapest, Hungary, September 15-20, 200

    Decomposition of Harmonic and Jet Contributions to Particle-pair Correlations at Ultra-relativistic Energies

    Full text link
    Methodology is presented for analysis of two-particle azimuthal angle correlation functions obtained in collisions at ultra-relativistic energies. We show that harmonic and di-jet contributions to these correlation functions can be reliably decomposed by two techniques to give an accurate measurement of the jet-pair distribution. Results from detailed Monte Carlo simulations are used to demonstrate the efficacy of these techniques in the study of possible modifications to jet topologies in heavy ion reactions.Comment: Updated version to be published in PRC Rapid Com

    Veterinary Medicine in the Hawaiian Islands

    Get PDF
    The practice of veterinary medicine in Hawaii is comparable in many ways to practices found in the average American community with perhaps some differences caused by its subtropical climate, its inhabitants of many racial origins, its insular limitations or advantages, its specialized industries, and the size of its land area

    Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties

    Full text link
    Based on a numerical ab initio study, we discuss a structure model for a broad boron sheet, which is the analog of a single graphite sheet, and the precursor of boron nanotubes. The sheet has linear chains of sp hybridized sigma bonds lying only along its armchair direction, a high stiffness, and anisotropic bonds properties. The puckering of the sheet is explained as a mechanism to stabilize the sp sigma bonds. The anisotropic bond properties of the boron sheet lead to a two-dimensional reference lattice structure, which is rectangular rather than triangular. As a consequence the chiral angles of related boron nanotubes range from 0 to 90 degrees. Given the electronic properties of the boron sheets, we demonstrate that all of the related boron nanotubes are metallic, irrespective of their radius and chiral angle, and we also postulate the existence of helical currents in ideal chiral nanotubes. Furthermore, we show that the strain energy of boron nanotubes will depend on their radii, as well as on their chiral angles. This is a rather unique property among nanotubular systems, and it could be the basis of a different type of structure control within nanotechnology.Comment: 16 pages, 17 figures, 2 tables, Versions: v1=preview, v2=first final, v3=minor corrections, v4=document slightly reworke

    Nonlinear Dynamic Analysis of Cracked Beam on Elastic Foundation Subjected to Moving Mass

    Full text link
    This paper presents a finite element algorithm for nonlinear dynamic analysis of cracked beams on an elastic foundation subjected to moving mass. Quantity surveying with parameters of varied cracks, foundation and loads shows their influence levels on the nonlinear dynamic response of the beams. The findings of the paper are the basis for the analysis, evaluation, and diagnosis of damages of beam structures on the elastic foundation subjected to moving loads, in which the common defects of the beams such as cracks are considered in order to improve the system's operational efficiency in a wide range of engineering applications
    • 

    corecore