26,964 research outputs found

    Comparative analysis of VDMOS/LDMOS power transistors for RF amplifiers

    Get PDF
    A comparison between the RF performance of vertical and lateral power MOSFETs is presented. The role of each parasitic parameter in the assessment of the power gain, 1-dB compression point, efficiency, stability, and output matching is evaluated quantitatively using new analytical expressions derived from a ten-element model. This study reveals that the contribution of the parasitic parameter on degradation of performance depends upon the specific technology and generic perceptions of source inductance and feedback capacitance in VDMOS degradation may not always hold. This conclusion is supported by a detailed analysis of three devices of the same power rating from three different commercial vendors. A methodology for optimizing a device technology, specifically for RF performance and power amplifier performance is demonstrated

    Discrete and finite Genral Relativity

    Full text link
    We develop the General Theory of Relativity in a formalism with extended causality that describes physical interaction through discrete, transversal and localized pointlike fields. The homogeneous field equations are then solved for a finite, singularity-free, point-like field that we associate to a ``classical graviton". The standard Einstein's continuous formalism is retrieved by means of an averaging process, and its continuous solutions are determined by the chosen imposed symetry. The Schwarzschild metric is obtained by the imposition of spherical symmetry on the averaged field.Comment: Modified conform the version to appear in Classical and Quantum Gravit

    Going Deeper with Semantics: Video Activity Interpretation using Semantic Contextualization

    Full text link
    A deeper understanding of video activities extends beyond recognition of underlying concepts such as actions and objects: constructing deep semantic representations requires reasoning about the semantic relationships among these concepts, often beyond what is directly observed in the data. To this end, we propose an energy minimization framework that leverages large-scale commonsense knowledge bases, such as ConceptNet, to provide contextual cues to establish semantic relationships among entities directly hypothesized from video signal. We mathematically express this using the language of Grenander's canonical pattern generator theory. We show that the use of prior encoded commonsense knowledge alleviate the need for large annotated training datasets and help tackle imbalance in training through prior knowledge. Using three different publicly available datasets - Charades, Microsoft Visual Description Corpus and Breakfast Actions datasets, we show that the proposed model can generate video interpretations whose quality is better than those reported by state-of-the-art approaches, which have substantial training needs. Through extensive experiments, we show that the use of commonsense knowledge from ConceptNet allows the proposed approach to handle various challenges such as training data imbalance, weak features, and complex semantic relationships and visual scenes.Comment: Accepted to WACV 201

    Medical education on fitness to drive : a survey of all UK medical schools

    Get PDF
    Aim: To identify the extent to which medical aspects of fitness to drive (FTD) are taught within UK medical schools. Methods: A survey of all 32 UK medical schools. In-depth interviews with a range of staff at two medical schools; telephone survey of 30 schools. Results: Two thirds of schools reported specific teaching on medical aspects of FTD but few covered it in any depth or in relation to specific medical conditions. Only one school taught FTD in relation to elderly medicine. FTD was an examination topic at only 12 schools. Conclusion: Teaching on FTD is inconsistent across UK medical schools. Many new doctors will graduate with limited knowledge of medical aspects of FTD

    A Compound model for the origin of Earth's water

    Full text link
    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which, local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water-delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using D/H ratio, finding possible relative contributions from each source, focusing on planets formed in the habitable zone. We find that the compound model play an important role by showing more advantage in the amount and time of water-delivery in Earth-like planets.Comment: Accepted for publication in The Astrophysical Journa
    • …
    corecore