1,014 research outputs found

    Magnetic Field Saturation of the Ion Weibel Instability in Interpenetrating Relativistic Plasmas

    Full text link
    The time evolution and saturation of the Weibel instability at the ion Alfv\'en current are presented by ab initio particle-in-cell simulations. We found that the ion Weibel current in 3D could evolve into the Alfv\'en current where the magnetic field energy is sustained at 1.5\% of the initial beam kinetic energy. The current filaments are no longer isolated at saturation, but rather connected to each other to form a network structure. Electrons are continuously heated during the coalescence of the filaments, which is crucial for obtaining sustained magnetic fields with much stronger levels than with 2D simulations. The results highlight again the importance of the Weibel instability in generating magnetic fields in laboratory, astrophysical, and cosmological situations.Comment: 4 pages, 4 figures, accepted for publication in ApJ

    Measuring Anomalous Couplings in H->WW* Decays at the International Linear Collider

    Get PDF
    Measurement of the Higgs coupling to W-bosons is an important test of our understanding of the electroweak symmetry breaking mechanism. We study the sensitivity of the International Linear Collider (ILC) to the presence of anomalous HW+W- couplings using ZH -> nu nu WW* -> nu nu 4j events. Using an effective Lagrangian approach, we calculate the differential decay rates of the Higgs boson including the effects of new dimension-5 operators. We present a Monte Carlo simulation of events at the ILC, using a full detector simulation based on geant4 and a real event reconstruction chain. Expected constraints on the anomalous couplings are given.Comment: 18 pages, 7 figures, 1 tabl

    Coherent destruction of tunneling, dynamic localization and the Landau-Zener formula

    Full text link
    We clarify the internal relationship between the coherent destruction of tunneling (CDT) for a two-state model and the dynamic localization (DL) for a one-dimensional tight-binding model, under the periodical driving field. The time-evolution of the tight-binding model is reproduced from that of the two-state model by a mapping of equation of motion onto a set of SU(2){\rm SU}(2) operators. It is shown that DL is effectively an infinitely large dimensional representation of the CDT in the SU(2){\rm SU}(2) operators. We also show that both of the CDT and the DL can be interpreted as a result of destructive interference in repeated Landau-Zener level-crossings.Comment: 5 pages, no figur

    Relation between the 4d superconformal index and the S^3 partition function

    Full text link
    A relation between the 4d superconformal index and the S^3 partition function is studied with focus on the 4d and 3d actions used in localization. In the case of vanishing Chern-Simons levels and round S^3 we explicitly show that the 3d action is obtained from the 4d action by dimensional reduction up to terms which do not affect the exact results. By combining this fact and a recent proposal concerning a squashing of S^3 and SU(2) Wilson line, we obtain a formula which gives the partition function depending on the Weyl weight of chiral multiplets, real mass parameters, FI parameters, and a squashing parameter as a limit of the index of a parent 4d theory.Comment: 20 pages, LaTeX; v2: comments added; v3: minor corrections, version published in JHE

    Dissipative Landau-Zener transitions of a qubit: bath-specific and universal behavior

    Full text link
    We study Landau-Zener transitions in a qubit coupled to a bath at zero temperature. A general formula is derived that is applicable to models with a non-degenerate ground state. We calculate exact transition probabilities for a qubit coupled to either a bosonic or a spin bath. The nature of the baths and the qubit-bath coupling is reflected in the transition probabilities. For diagonal coupling, when the bath causes energy fluctuations of the diabatic qubit states but no transitions between them, the transition probability coincides with the standard LZ probability of an isolated qubit. This result is universal as it does not depend on the specific type of bath. For pure off-diagonal coupling, by contrast, the tunneling probability is sensitive to the coupling strength. We discuss the relevance of our results for experiments on molecular nanomagnets, in circuit QED, and for the fast-pulse readout of superconducting phase qubits.Comment: 16 pages, 8 figure

    Large angular momentum closed strings colliding with D-branes

    Get PDF
    We investigate colliding processes of closed strings with large angular momenta with D-branes. We give explicit CFT calculations for closed string states with an arbitrary number of bosonic excitations and no or one fermion excitation. The results reproduce the correspondence between closed string states and single trace operators in the boundary gauge theory recently suggested by Berenstein, Maldacena and Nastase.Comment: LaTeX, 18pages, explanation about the two conditions in section 2 added, some statements about closed string vertex operators correcte
    corecore