553 research outputs found

    GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy

    Full text link
    Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on graphics processing unit (GPU) based on our previous work on CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called column generation approach to deal with its extremely large dimensionality on GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and 2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART

    Tensile Deformation of Oriented Poly(ε-caprolactone) and Its Miscible Blends with Poly(vinyl methyl ether)

    Get PDF
    The structural evolution of micromolded poly(ε-caprolactone) (PCL) and its miscible blends with noncrystallizable poly(vinyl methyl ether) (PVME) at the nanoscale was investigated as a function of deformation ratio and blend composition using in situ synchrotron smallangle X-ray scattering (SAXS) and scanning SAXS techniques. It was found that the deformation mechanism of the oriented samples shows a general scheme for the process of tensile deformation: crystal block slips within the lamellae occur at small deformations followed by a stressinduced fragmentation and recrystallization process along the drawing direction at a critical strain where the average thickness of the crystalline lamellae remains essentially constant during stretching. The value of the critical strain depends on the amount of the amorphous component incorporated in the blends, which could be traced back to the lower modulus of the entangled amorphous phase and, therefore, the reduced network stress acting on the crystallites upon addition of PVME. When stretching beyond the critical strain the slippage of the fibrils (stacks of newly formed lamellae) past each other takes place resulting in a relaxation of stretched interlamellar amorphous chains. Because of deformation-induced introduction of the amorphous PVME into the interfibrillar regions in the highly oriented blends, the interactions between fibrils becomes stronger upon further deformation and thus impeding sliding of the fibrils to some extent leading finally to less contraction of the interlamellar amorphous layers compared to the pure PCLNational Natural Science Foundation of China (21204088 and 21134006). This work is within the framework of the RCUK/EPSRC Science Bridges China project of UK−China Advanced Materials Research Institute (AMRI)

    IL-6 mediated JAK/STAT3 signaling pathway in cancer patients with cachexia

    Get PDF
    CONCLUSION: STAT3 may be considered as a therapeutic target for cachectic patients with gastric, lung and breast cancer. Furthermore, IL-6 mediates STAT3 activation in cachectic gastric and breast cancer patients (Tab. 5, Fig. 2, Ref. 62)

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    The Ocular Conjunctiva as a Mucosal Immunization Route: A Profile of the Immune Response to the Model Antigen Tetanus Toxoid

    Get PDF
    Background: In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods: BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 x LD50) of tetanus toxin. Results: The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFN gamma and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p lt 0.05). Conclusion: Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    Treating 4,000 diabetic patients in Cambodia, a high-prevalence but resource-limited setting: a 5-year study

    Get PDF
    BACKGROUND: Despite the worldwide increasing burden of diabetes, there has been no corresponding scale-up of treatment in developing countries and limited evidence of program effectiveness. In 2002, in collaboration with the Ministry of Health of Cambodia, Médecins Sans Frontières initiated an outpatient program of subsidized diabetic care in two hospital-based chronic disease clinics in rural settings. We aimed to describe the outcomes of newly and previously diagnosed diabetic patients enrolled from 2002 to 2008. METHODS: We calculated the mean and proportion of patients who met the recommended treatment targets, and the drop from baseline values for random blood glucose (RBG), hemoglobin A1c (HbA1c), blood pressure (BP), and body mass index (BMI) at regular intervals. Analysis was restricted to patients not lost to follow-up. We used the t test to compare baseline and subsequent paired values. RESULTS: Of 4404 patients enrolled, 2,872 (65%) were still in care at the time of the study, 24 (0.5%) had died, and 1,508 (34%) were lost to follow-up. Median age was 53 years, 2,905 (66%) were female and 4,350 (99%) had type 2 diabetes. Median (interquartile range (IQR)) follow-up was 20 months (5 to 39.5 months). A total of 24% (51/210) of patients had a HbA1c concentration of <7% and 35% (709/1,995) had a RBG <145 mg/dl within 1 year. There was a significant drop of 109 mg/dl (95% confidence interval (CI) 103.1 to 114.3) in mean RBG (P < 0.001) and a drop of 2.7% (95% CI 2.3 to 3.0) in mean HbA1c (P < 0.001) between baseline and month 6. In all, 45% (327/723) and 62% (373/605) of patients with systolic or diastolic hypertension at baseline, respectively, reached = 130/80 mm Hg within 1 year. There was a drop of 13.5 mm Hg (95% CI 12.1 to 14.9) in mean systolic blood pressure (SBP) (P < 0.001), and a drop of 11.7 mm Hg (95% CI 10.8 to 12.6) in mean diastolic blood pressure (DBP) (P < 0.001) between baseline and month 6. Only 22% (90/401) patients with obesity at baseline lowered their BMI <27.5 kg/m2 after 1 year. Factors associated with loss to follow-up were male sex, age >60 years, living outside the province, normal BMI on admission, high RBG on last visit, and coming late for the last consultation. CONCLUSION: Significant and clinically important improvements in glycemia and BP were observed, but a relatively low proportion of diabetic patients reached treatment targets. These results and the high loss to follow-up rate highlight the challenges of delivering diabetic care in rural, resource-limited settings

    Comparative Functional Genomics Analysis of NNK Tobacco-Carcinogen Induced Lung Adenocarcinoma Development in Gprc5a-Knockout Mice

    Get PDF
    Background: Improved understanding of lung cancer development and progression, including insights from studies of animal models, are needed to combat this fatal disease. Previously, we found that mice with a knockout (KO) of G-protein coupled receptor 5A (Gprc5a) develop lung tumors after a long latent period (12 to 24 months). Methodology/Principal Findings: To determine whether a tobacco carcinogen will enhance tumorigenesis in this model, we administered 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) i.p. to 2-months old Gprc5a-KO mice and sacrificed groups (n = 5) of mice at 6, 9, 12, and 18 months later. Compared to control Gprc5a-KO mice, NNK-treated mice developed lung tumors at least 6 months earlier, exhibited 2- to 4-fold increased tumor incidence and multiplicity, and showed a dramatic increase in lesion size. A gene expression signature, NNK-ADC, of differentially expressed genes derived by transcriptome analysis of epithelial cell lines from normal lungs of Gprc5a-KO mice and from NNK-induced adenocarcinoma was highly similar to differential expression patterns observed between normal and tumorigenic human lung cells. The NNK-ADC expression signature also separated both mouse and human adenocarcinomas from adjacent normal lung tissues based on publicly available microarray datasets. A key feature of the signature, up-regulation of Ube2c, Mcm2, and Fen1, was validated in mouse normal lung and adenocarcinoma tissues and cells by immunohistochemistry and western blotting, respectively

    Grain refinement of magnesium alloys: a review of recent research, theoretical developments and their application

    Get PDF
    This paper builds on the ‘‘Grain Refinement of Mg Alloys’’ published in 2005 and reviews the grain refinement research onMg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy’s as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment
    corecore