4,896 research outputs found

    Manufacture of multilayered artificial cell membranes through sequential bilayer deposition on emulsion templates.

    Get PDF
    Efforts to manufacture artificial cells that replicate the architectures, processes and behaviours of biological cells are rapidly increasing. Perhaps the most commonly reconstructed cellular structure is the membrane, through the use of unilamellar vesicles as models. However, many cellular membranes, including bacterial double membranes, nuclear envelopes, and organelle membranes, are multilamellar. Due to a lack of technologies available for their controlled construction, multilayered membranes are not part of the repertoire of cell-mimetic motifs used in bottom-up synthetic biology. To address this, we developed emulsion-based technologies that allow cell-sized multilayered vesicles to be produced layer-by-layer, with compositional control over each layer, thus enabling studies that would otherwise remain inaccessible. We discovered that bending rigidities scale with the number of layers and demonstrate inter-bilayer registration between coexisting liquid-liquid domains. These technologies will contribute to the exploitation of multilayered membrane structures, paving the way for incorporating protein complexes that span multiple bilayers

    Designing durable and flexible superhydrophobic coatings and its application in oil purification

    Get PDF
    Lotus-inspired superhydrophobic coatings are usually mechanically weak and lack durability, this hinders their practical applications. A suspension that can be treated on various materials in any size and shape to form a mechanically durable superhydrophobic coating is developed, which retains water repellent properties after multiple cycles of abrasion, blade scratching, tape-peeling, repeated deformation, a series of environmental tests and recycling. Based on its superhydrophobicity under oil, two highly efficient systems were developed for oil purification – stirring and inverted cone systems. Small water drops converge on the coated surface that was immersed in oil through velocity-controlled stirring, or designing an inverted cone superhydrophobic surface under oil to collect water drops spontaneously. This coating can be readily used for practical applications to make a durable superhydrophobic coating that functions either in air or oils

    Role of axin in nerve growth factor-stimulated neurite outgrowth

    Get PDF
    The role of integrin-linked kinase (ILK), a kinase that is involved in various cellular processes, including adhesion and migration, has not been studied in primary neurons. Using mRNA dot blot and Western blot analysis of ILK in rat and human brain tissue, we found that ILK is expressed in various regions of the CNS. Immunohistochemical and immunocytochemical techniques revealed granular ILK staining that is enriched in neurons and colocalizes with the 1 integrin subunit. The role of ILK in neurite growth promotion by NGF was studied in rat pheochromocytoma cells and dorsal root ganglion neurons using a pharmacological inhibitor of ILK (KP-392) or after overexpres-sion of dominant-negative ILK (ILK-DN). Both molecular and pharmacological inhibition of ILK activity significantly reduced NGF-induced neurite outgrowth. Survival assays indicate that KP-392-induced suppression of neurite outgrowth occurred in the absence of cell death. ILK kinase activity was stimulated by NGF. NGF-mediated stimulation of phosphorylation of both AKT and the Taukinase glycogen synthase kinase-3 (GSK-3) was inhibited in the presence of KP-392 and after overexpression of ILK-DN. Consequently, ILKinhibition resulted in an increase in the hyperphosphorylation of Tau , a substrate of GSK-3. Together these findings indicate that ILK is an important effector in NGF-mediated neurite outgrowth. The role of integrin-linked kinase (ILK), a kinase that is involved in various cellular processes, including adhesion and migration, has not been studied in primary neurons. Using mRNA dot blot and Western blot analysis of ILK in rat and human brain tissue, we found that ILK is expressed in various regions of the CNS. Immunohistochemical and immunocytochemical techniques revealed granular ILK staining that is enriched in neurons and colocalizes with the 1 integrin subunit. The role of ILK in neurite growth promotion by NGF was studied in rat pheochromocytoma cells and dorsal root ganglion neurons using a pharmacological inhibitor of ILK (KP-392) or after overexpres- sion of dominant-negative ILK (ILK-DN). Both molecular and pharmacological inhibition of ILK activity significantly reduced NGF- induced neurite outgrowth. Survival assays indicate that KP-392-induced suppression of neurite outgrowth occurred in the absence of cell death. ILK kinase activity was stimulated by NGF. NGF-mediated stimulation of phosphorylation of both AKT and the Tau kinase glycogen synthase kinase-3 (GSK-3) was inhibited in the presence of KP-392 and after overexpression of ILK-DN. Consequently, ILK inhibition resulted in an increase in the hyperphosphorylation of Tau , a substrate of GSK-3. Together these findings indicate that ILK is an important effector in NGF-mediated neurite outgrowth

    A redshift determination of the host galaxy

    Get PDF
    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V,R, I, z) imaging for the host galaxy of GRB980329, which is one of well studied “optically dark” gamma-ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21–3.79 at 90 range). The implied V -band extinction is rather low, typically ∼ 1 mag. At z = 3.56, the isotropic 40–700 keV total energy of GRB980329 is calculated as (2.1 ± 0.4) × 1054 erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 1051 ergs, their opening angle is calculated as θj = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts

    Assays to monitor aggrephagy in Drosophila brain

    Get PDF
    Accumulation of ubiquitinated protein aggregates is a hallmark of most ageingrelated neurodegenerative disorders. Autophagy has been found to be involved in the selective clearance of these protein aggregates, and this process is called aggrephagy. Here we provide two protocols for the investigation of protein aggregation and their removal by autophagy using western blotting and immunofluorescence techniques in Drosophila brain. Investigating the role of aggrephagy at the cellular and organismal level is important for the development of therapeutic interventions against ageing-related diseases

    Theoretical study of Ga-based nanowires and the interaction of Ga with single-wall carbon nanotubes

    Get PDF
    Gallium displays physical properties which can make it a potential element to produce metallic nanowires and high-conducting interconnects in nanoelectronics. Using first-principles pseudopotential plane method we showed that Ga can form stable metallic linear and zigzag monatomic chain structures. The interaction between individual Ga atom and single-wall carbon nanotube (SWNT) leads to a chemisorption bond involving charge transfer. Doping of SWNT with Ga atom gives rise to donor states. Owing to a significant interaction between individual Ga atom and SWNT, continuous Ga coverage of the tube can be achieved. Ga nanowires produced by the coating of carbon nanotube templates are found to be stable and high conducting.Comment: 8 pages, 8 figure

    Data Fusion of Objects Using Techniques Such as Laser Scanning, Structured Light and Photogrammetry for Cultural Heritage Applications

    Full text link
    In this paper we present a semi-automatic 2D-3D local registration pipeline capable of coloring 3D models obtained from 3D scanners by using uncalibrated images. The proposed pipeline exploits the Structure from Motion (SfM) technique in order to reconstruct a sparse representation of the 3D object and obtain the camera parameters from image feature matches. We then coarsely register the reconstructed 3D model to the scanned one through the Scale Iterative Closest Point (SICP) algorithm. SICP provides the global scale, rotation and translation parameters, using minimal manual user intervention. In the final processing stage, a local registration refinement algorithm optimizes the color projection of the aligned photos on the 3D object removing the blurring/ghosting artefacts introduced due to small inaccuracies during the registration. The proposed pipeline is capable of handling real world cases with a range of characteristics from objects with low level geometric features to complex ones

    q-Form fields on p-branes

    Full text link
    In this paper, we give one general method for localizing any form (q-form) field on p-branes with one extra dimension, and apply it to some typical p-brane models. It is found that, for the thin and thick Minkowski branes with an infinite extra dimension, the zero mode of the q-form fields with q<(p-1)/2 can be localized on the branes. For the thick Minkowski p-branes with one finite extra dimension, the localizable q-form fields are those with q<p/2, and there are also some massive bound Kaluza-Klein modes for these q-form fields on the branes. For the same q-form field, the number of the bound Kaluza-Klein modes (but except the scalar field (q=0)) increases with the dimension of the p-branes. Moreover, on the same p-brane, the q-form fields with higher q have less number of massive bound KK modes. While for a family of pure geometrical thick p-branes with a compact extra dimension, the q-form fields with q<p/2 always have a localized zero mode. For a special pure geometrical thick p-brane, there also exist some massive bound KK modes of the q-form fields with q<p/2, whose number increases with the dimension of the p-brane.Comment: 14 pages, 2 figures, published versio

    Localization of gravity on a de Sitter thick braneworld without scalar fields

    Full text link
    In this work we present a simple thick braneworld model that is generated by an intriguing interplay between a 5D cosmological constant with a de Sitter metric induced in the 3-brane without the inclusion of scalar fields. We show that 4D gravity is localized on this brane, provide analytic expressions for the massive Kaluza-Klein (KK) fluctuation modes and also show that the spectrum of metric excitations displays a mass gap. We finally present the corrections to Newton's law due to these massive modes. This model has no naked singularities along the fifth dimension despite the existence of a mass gap in the graviton spectrum as it happens in thick branes with 4D Poincare symmetry, providing a simple model with very good features: the curvature is completely smooth along the fifth dimension, it localizes 4D gravity and the spectrum of gravity fluctuations presents a mass gap, a fact that rules out the existence of phenomenologically dangerous ultralight KK excitations in the model. We finally present our solution as a limit of scalar thick branes.Comment: 11 pages in latex, no figures, title and abstract changed, a new section and some references adde

    Evolution of Li, Be and B in the Galaxy

    Get PDF
    In this paper we study the production of Li, Be and B nuclei by Galactic cosmic ray spallation processes. We include three kinds of processes: (i) spallation by light cosmic rays impinging on interstellar CNO nuclei (direct processes); (ii) spallation by CNO cosmic ray nuclei impinging on interstellar p and 4He (inverse processes); and (iii) alpha-alpha fusion reactions. The latter dominate the production of 6Li and 7Li. We calculate production rates for a closed-box Galactic model, verifying the quadratic dependence of the Be and B abundances for low values of Z. These are quite general results and are known to disagree with observations. We then show that the multi-zone multi-population model we used previously for other aspects of Galactic evolution produces quite good agreement with the linear trend observed at low metallicities without fine tuning. We argue that reported discrepancies between theory and observations do not represent a nucleosynthetic problem, but instead are the consequences of inaccurate treatments of Galactic evolution.Comment: 26 pages, 5 figures, LaTeX. The Astrophysical Journal, in pres
    corecore