43 research outputs found

    18F-FDG PET during stereotactic body radiotherapy for stage I lung tumours cannot predict outcome: a pilot study

    Get PDF
    (18)F-Fluorodeoxyglucose positron emission tomography (FDG PET) has been used to assess metabolic response several months after stereotactic body radiotherapy (SBRT) for early-stage non-small cell lung cancer. However, whether a metabolic response can be observed already during treatment and thus can be used to predict treatment outcome is undetermined. Ten medically inoperable patients with FDG PET-positive lung tumours were included. SBRT consisted of three fractions of 20 Gy delivered at the 80% isodose at days 1, 6 and 11. FDG PET was performed before, on day 6 immediately prior to administration of the second fraction of SBRT and 12 weeks after completion of SBRT. Tumour metabolism was assessed semi-quantitatively using the maximum standardized uptake value (SUV(max)) and SUV(70%). After the first fraction, median SUV(max) increased from 6.7 to 8.1 (p = 0.07) and median SUV(70%) increased from 5.7 to 7.1 (p = 0.05). At 12 weeks, both median SUV(max) and median SUV(70%) decreased by 63% to 3.1 (p = 0.008) and to 2.5 (p = 0.008), respectively. SUV increased during treatment, possibly due to radiation-induced inflammation. Therefore, it is unlikely that (18)F-FDG PET during SBRT will predict treatment success

    Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma

    Get PDF
    Abstract Background To compare computed tomography (CT) with co-registered positron emission tomography-computed tomography (PET-CT) as the basis for delineating gross tumor volume (GTV) in unresectable, locally advanced pancreatic carcinoma (LAPC). Methods Fourteen patients with unresectable LAPC had both CT and PET images acquired. For each patient, two three-dimensional conformal plans were made using the CT and PET-CT fusion data sets. We analyzed differences in treatment plans and doses of radiation to primary tumors and critical organs. Results Changes in GTV delineation were necessary in 5 patients based on PET-CT information. In these patients, the average increase in GTV was 29.7%, due to the incorporation of additional lymph node metastases and extension of the primary tumor beyond that defined by CT. For all patients, the GTVCT versus GTVPET-CT was 92.5 ± 32.3 cm3 versus 104.5 ± 32.6 cm3 (p = 0.009). Toxicity analysis revealed no clinically significant differences between two plans with regard to doses to critical organs. Conclusion Co-registration of PET and CT information in unresectable LAPC may improve the delineation of GTV and theoretically reduce the likelihood of geographic misses.</p

    Clinical development of new drug-radiotherapy combinations.

    Get PDF
    In countries with the best cancer outcomes, approximately 60% of patients receive radiotherapy as part of their treatment, which is one of the most cost-effective cancer treatments. Notably, around 40% of cancer cures include the use of radiotherapy, either as a single modality or combined with other treatments. Radiotherapy can provide enormous benefit to patients with cancer. In the past decade, significant technical advances, such as image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic radiotherapy, and proton therapy enable higher doses of radiotherapy to be delivered to the tumour with significantly lower doses to normal surrounding tissues. However, apart from the combination of traditional cytotoxic chemotherapy with radiotherapy, little progress has been made in identifying and defining optimal targeted therapy and radiotherapy combinations to improve the efficacy of cancer treatment. The National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group (CTRad) formed a Joint Working Group with representatives from academia, industry, patient groups and regulatory bodies to address this lack of progress and to publish recommendations for future clinical research. Herein, we highlight the Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer.National Institute for Health ResearchThis is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/nrclinonc.2016.7

    The link between diversity and resilience

    No full text
    Please note that gray areas reflect artwork that has been intentionally removed. The substantive content of the article appears as originally published. SUMMER 2005 MIT SLOAN MANAGEMENT REVIEW 61 ost managers and academics agree that innovation ensures superior performance. But which innovation strategy or strategies best sustain that performance over time? That is, how can companies manage innovation in order to become more resilient? Resilience is both an applicable and an important concept for companies in turbulent times. The concept of resilience originates in research on child behavior,1 which indicates that some children prove to be positive, focused, flexible and proactive — in a word, resilient — despite exposure to extremely challenging and stressful environments.2 There are several ways of conceptualizing and adapting the basic idea of resilience to the business world. Some business writers have focused on corporate attributes, while others have focused on issues such as risk awareness, risk protection and the reduction of vulnerabilities.3 In strate-gic management, resilience has been defined as a process capability; in order to reinven
    corecore