69 research outputs found

    Persistence of Environmental DNA in Freshwater Ecosystems

    Get PDF
    The precise knowledge of species distribution is a key step in conservation biology. However, species detection can be extremely difficult in many environments, specific life stages and in populations at very low density. The aim of this study was to improve the knowledge on DNA persistence in water in order to confirm the presence of the focus species in freshwater ecosystems. Aquatic vertebrates (fish: Siberian sturgeon and amphibian: Bullfrog tadpoles) were used as target species. In control conditions (tanks) and in the field (ponds), the DNA detectability decreases with time after the removal of the species source of DNA. DNA was detectable for less than one month in both conditions. The density of individuals also influences the dynamics of DNA detectability in water samples. The dynamics of detectability reflects the persistence of DNA fragments in freshwater ecosystems. The short time persistence of detectable amounts of DNA opens perspectives in conservation biology, by allowing access to the presence or absence of species e.g. rare, secretive, potentially invasive, or at low density. This knowledge of DNA persistence will greatly influence planning of biodiversity inventories and biosecurity surveys

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≀2 years, 2-5 years, ≀15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR <0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted <4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (<10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR>6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS <50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR<0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population

    Estimating population size with noninvasive capture-mark-recapture data.

    No full text
    International audienceEstimating population size of elusive and rare species is challenging. The difficulties in catching such species has triggered the use of samples collected noninvasively, such as feces or hair, from which genetic analysts yields data similar to capture-mark-recapture (CMR) data. There are, however, two differences between classical CMR and noninvasive CMR. First, capture and recapture data are gathered over multiple sampling sessions in classical CMR, whereas in noninvasive CMR they can be obtained from a single sampling session. Second, because of genotyping errors and unlike classical CMR, there is no simple relationship between (genetic) marks and individuals in noninvasive CMR. We evaluated, through simulations, the reliability of population size estimates based on noninvasive CMR. For equal sampling efforts, we compared estimates of population size N obtained from accumulation curves, a maximum likelihood, and a Bayesian estimator For a closed population and without sampling heterogeneity, estimates obtained from noninvasive CMR were as reliable as estimates from classical CMR. The sampling structure (single or multiple session) did not alter the results, the Bayesian estimator in the case of a single sampling session presented the best compromise between low mean squared error and a 95% confidence interval encompassing the parametric value of N in most simulations. Finally, when suitable field and labprotocols were used, genotyping errors did not substantially bias population size estimates (bias < 3.5% in all simulations). The ability to reliably estimate population size from noninvasive samples taken during a single session offers a new and useful technique for the management and conservation of elusive and rare species

    Estimating population size with noninvasive capture-mark-recapture data.

    No full text
    International audienceEstimating population size of elusive and rare species is challenging. The difficulties in catching such species has triggered the use of samples collected noninvasively, such as feces or hair, from which genetic analysts yields data similar to capture-mark-recapture (CMR) data. There are, however, two differences between classical CMR and noninvasive CMR. First, capture and recapture data are gathered over multiple sampling sessions in classical CMR, whereas in noninvasive CMR they can be obtained from a single sampling session. Second, because of genotyping errors and unlike classical CMR, there is no simple relationship between (genetic) marks and individuals in noninvasive CMR. We evaluated, through simulations, the reliability of population size estimates based on noninvasive CMR. For equal sampling efforts, we compared estimates of population size N obtained from accumulation curves, a maximum likelihood, and a Bayesian estimator For a closed population and without sampling heterogeneity, estimates obtained from noninvasive CMR were as reliable as estimates from classical CMR. The sampling structure (single or multiple session) did not alter the results, the Bayesian estimator in the case of a single sampling session presented the best compromise between low mean squared error and a 95% confidence interval encompassing the parametric value of N in most simulations. Finally, when suitable field and labprotocols were used, genotyping errors did not substantially bias population size estimates (bias < 3.5% in all simulations). The ability to reliably estimate population size from noninvasive samples taken during a single session offers a new and useful technique for the management and conservation of elusive and rare species

    Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer

    No full text
    International audiencePopulation size information is critical for managing endangered or harvested populations. Population size can now be estimated from non-invasive genetic sampling. However, pitfalls remain such as genotyping errors (allele dropout and false alleles at microsatellite loci). To evaluate the feasibility of non-invasive sampling (e.g., for population size estimation), a pilot study is required. Here, we present a pilot study consisting of (i) a genetic step to test loci amplification and to estimate allele frequencies and genotyping error rates when using faecal DNA, and (ii) a simulation step to quantify and minimise the effects of errors on estimates of population size. The pilot study was conducted on a population of red deer in a fenced natural area of 5440 ha, in France. Twelve microsatellite loci were tested for amplification and genotyping errors. The genotyping error rates for microsatellite loci were 0-0.83 (mean=0.2) for allele dropout rates and 0-0.14 (mean=0.02) for false allele rates, comparable to rates encountered in other non-invasive studies. Simulation results suggest we must conduct 6 PCR amplifications per sample (per locus) to achieve approximately 97% correct genotypes. The 3% error rate appears to have little influence on the accuracy and precision of population size estimation. This paper illustrates the importance of conducting a pilot study (including genotyping and simulations) when using non-invasive sampling to study threatened or managed populations

    Isolation and characterization of eight polymorphic microsatellite markers from South American limpets of the Nacella species complex

    Get PDF
    In this study we provide eight polymorphic microsatellite markers for the two South American patel- logastropods Nacella magellanica and N. deaurata. Allelic diversity ranged from 5 to 57 alleles per locus. Observed heterozygosity varied between 0.1 and 0.98. Three of the four loci designed for N. magellanica cross-amplified also with N. deaurata, and two loci vice versa. Six of the microsatellites successfully cross-amplified with the sister taxon N. mytilina. This set of microsatellites provides a suitable tool for population genetic and phylogeographic studies

    Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years

    No full text
    In the early 1900s, the wolf (Canis lupus) was extirpated from France and Switzerland. There is growing evidence that the species is presently recolonizing these countries in the western Alps. By sequencing the mitochondrial DNA (mtDNA) control region of various samples mainly collected in the field (scats, hairs, regurgitates, blood or tissue; n = 292), we could (1) develop a non-invasive method enabling the unambiguous attribution of these samples to wolf, fox (Vulpes vulpes) or dog (Canis familiaris), among others; (2) demonstrate that Italian, French and Swiss wolves share the same mtDNA haplotype, a haplotype that has never been found in any other wolf population world-wide. Combined together, field and genetic data collected over 10 years corroborate the scenario of a natural expansion of wolves from the Italian source population. Furthermore, such a genetic approach is of conservation significance, since it has important consequences for management decisions. This first long-term report using non-invasive sampling demonstrates that long-distance dispersers are common, supporting the hypothesis that individuals may often attempt to colonize far from their native pack, even in the absence of suitable corridors across habitats characterized by intense human activities
    • 

    corecore