29,206 research outputs found

    The nuclear contacts and short range correlations in nuclei

    Full text link
    Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean- field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.Comment: Accepted for publication in Physics Letters. 6 pages, 2 figure

    Weak measurements with orbital angular momentum pointer states

    Get PDF
    Weak measurements are a unique tool for accessing information about weakly interacting quantum systems with minimal back action. Joint weak measurements of single-particle operators with pointer states characterized by a two-dimensional Gaussian distribution can provide, in turn, key information about quantum correlations which can be of relevance for quantum information applications. Here we demonstrate that by employing two-dimensional pointer states endowed with orbital angular momentum (OAM), it is possible to extract weak values of the higher order moments of single-particle operators, an inaccessible quantity with Gaussian pointer states only. We provide a specific example that illustrates the advantages of our method both, in terms of signal enhancement, and information retrieval.Comment: 5 pages, accepted for publication in Phys. Rev. Let

    Theory of photon coincidence statistics in photon-correlated beams

    Get PDF
    The statistics of photon coincidence counting in photon-correlated beams is thoroughly investigated considering the effect of the finite coincidence resolving time. The correlated beams are assumed to be generated using parametric downconversion, and the photon streams in the correlated beams are modeled by two partially correlated Poisson point processes. An exact expression for the mean rate of coincidence registration is developed using techniques from renewal theory. It is shown that the use of the traditional approximate rate, in certain situations, leads to the overestimation of the actual rate. The error between the exact and approximate coincidence rates increases as the coincidence-noise parameter, defined as the mean number of uncorrelated photons detected per coincidence resolving time, increases. The use of the exact statistics of the coincidence becomes crucial when the background noise is high or in cases when high precision measurement of coincidence is required. Such cases arise whenever the coincidence-noise parameter is even slightly in excess of zero. It is also shown that the probability distribution function of the time between consecutive coincidence registration can be well approximated by an exponential distribution function. The well-known and experimentally verified Poissonian model of the coincidence registration process is therefore theoretically justified. The theory is applied to an on-off keying communication system proposed by Mandel which has been shown to perform well in extremely noisy conditions. It is shown that the bit-error rate (BER) predicted by the approximate coincidence-rate theory can be significantly lower than the actual BER obtained using the exact theory

    Spin frequency distributions of binary millisecond pulsars

    Get PDF
    Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 10810^8 - 10910^9 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between accretion and rotation-powered states on time scales of a few years or shorter, has demonstrated this evolutionary scenario. Here, we present a thorough statistical analysis of the spin distributions of the various classes of millisecond pulsars to assess the evolution of their spin period between the different stages. Accreting sources that showed oscillations exclusively during thermonuclear type I X-ray bursts (nuclear-powered millisecond pulsars) are found to be significantly faster than rotation-powered sources, while accreting sources that possess a magnetosphere and show coherent pulsations (accreting millisecond pulsars) are not. On the other hand, if accreting millisecond pulsars and eclipsing rotation-powered millisecond pulsars form a common class of transitional pulsars, these are shown to have a spin distribution intermediate between the faster nuclear-powered millisecond pulsars and the slower non-eclipsing rotation-powered millisecond pulsars. We interpret these findings in terms of a spin-down due to the decreasing mass-accretion rate during the latest stages of the accretion phase, and in terms of the different orbital evolutionary channels mapped by the various classes of pulsars. We summarize possible instrumental selection effects, showing that even if an unbiased sample of pulsars is still lacking, their influence on the results of the presented analysis is reduced by recent improvements in instrumentation and searching techniques.Comment: Accepted for publication in A&A (6 pages, 4 figures

    Comparing supernova remnants around strongly magnetized and canonical pulsars

    Get PDF
    The origin of the strong magnetic fields measured in magnetars is one of the main uncertainties in the neutron star field. On the other hand, the recent discovery of a large number of such strongly magnetized neutron stars, is calling for more investigation on their formation. The first proposed model for the formation of such strong magnetic fields in magnetars was through alpha-dynamo effects on the rapidly rotating core of a massive star. Other scenarios involve highly magnetic massive progenitors that conserve their strong magnetic moment into the core after the explosion, or a common envelope phase of a massive binary system. In this work, we do a complete re-analysis of the archival X-ray emission of the Supernova Remnants (SNR) surrounding magnetars, and compare our results with all other bright X-ray emitting SNRs, which are associated with Compact Central Objects (CCOs; which are proposed to have magnetar-like B-fields buried in the crust by strong accretion soon after their formation), high-B pulsars and normal pulsars. We find that emission lines in SNRs hosting highly magnetic neutron stars do not differ significantly in elements or ionization state from those observed in other SNRs, neither averaging on the whole remnants, nor studying different parts of their total spatial extent. Furthermore, we find no significant evidence that the total X-ray luminosities of SNRs hosting magnetars, are on average larger than that of typical young X-ray SNRs. Although biased by a small number of objects, we found that for a similar age, there is the same percentage of magnetars showing a detectable SNR than for the normal pulsar population.Comment: 16 pages, 5 figures, Accepted for publication in MNRA

    Identification of high energy gamma-ray sources and source populations in the era of deep all-sky coverage

    Get PDF
    A large fraction of the anticipated source detections by the Gamma-ray Large Area Space Telescope (GLAST-LAT) will initially be unidentified. We argue that traditional approaches to identify individuals and/or populations of gamma ray sources will encounter procedural limitations. Those limitations are discussed on the background of source identifications from EGRET observations. Generally, our ability to classify (faint) source populations in the anticipated GLAST dataset with the required degree of statistical confidence will be hampered by sheer source wealth. A new paradigm for achieving the classification of gamma ray source populations is discussed.Comment: Comments: 6 pages, 2 figures, Accepted for publication in Astrophysics and Space Science, Proc. of "The Multi-Messenger Approach to High-Energy Gamma-ray Sources (Third Workshop on the Nature of Unidentified High-Energy Sources)", Barcelona, July 4-7, 200

    The Transition to College Process in PR-CETP Scholars

    Get PDF
    This article describes a study about the experiences of a group of students during the transition from high school to college. The students are future teachers who evidenced a high level of academic achievement in high school and received merit scholarships from the Puerto Rico Collaborative for Excellence in Teacher Preparation (PR-CETP). Two groups of students were compared: those who sustained a high GPA during their freshman year, and those who did not and, therefore, no longer qualified for the scholarship. The study was carried out through focused interviews with eight students, from three universities, four of whom maintained the scholarship and four who did not. Findings indicate that the main problems encountered were academic and social, and that the students received support from their families during the entire process. Regarding formal support, they pointed out that they felt highly satisfied with the services provided by PR-CETP and the universities, but they also pointed out (particularly those who lost the scholarship) that they needed additional services from the universities. They suggested, for example, better tutoring, and social activities among the scholars. The interviewed students, in general, consider that they faced the transition successfully since most of them described their academic, emotional, and social status as satisfactory at the time of the interviews
    • …
    corecore