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Weak measurements are a unique tool for accessing information about weakly interacting quantum

systems with minimal back action. Joint weak measurements of single-particle operators with pointer

states characterized by a two-dimensional Gaussian distribution can provide, in turn, key information

about quantum correlations that can be relevant for quantum information applications. Here we

demonstrate that by employing two-dimensional pointer states endowed with orbital angular momentum

(OAM), it is possible to extract weak values of the higher order moments of single-particle operators, an

inaccessible quantity with Gaussian pointer states only. We provide a specific example that illustrates the

advantages of our method both in terms of signal enhancement and information retrieval.
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Ideal von Neumannmeasurements in quantummechanics
are able to distinguish between the different eigenstates of
a given observable. Contrary to this, weak measurements, a
concept first introduced by Aharonov, Albert, and Vaidman
[1], describe a situation where the coupling between the
measuring device and the observable is a weak perturbation.
In this case, the uncertainty in the measurement is large in
comparison with the separation between the eigenvalues of
the observable, such that the different outcomes cannot be
resolved.

What makes a weak measurement an interesting phe-
nomenon is that the weak value of an observable A of the
system can yield an unexpected result [2–4]. In particular,
given a preselected state jii and a postselected state jfi of
the system, the weak value hAiw is defined as

hAiw ¼ hfjAjii
hfjii : (1)

If an appropriate postselection is made, for instance by
choosing jii and jfi to be nearly orthogonal, the weak
value hAiw can be significantly outside the spectrum of A
(weak-value amplification), and it can even take imaginary
values.

In the case of an observableA, which is weakly coupled to
a one-dimensional pointer state, the Hamiltonian of the
weakly coupled system can be described by H ¼ gAPx,
where Px is the pointer momentum operator, conjugate to its
position operator X. For a sufficiently weak coupling
strength gt, the interaction shifts the mean position of the
pointer by an amount �x ¼ gtReðhAiwÞ, where t is the
duration of the interaction. By measuring the mean value
of the pointer position displacement hXi and the pointer
momentum displacement hPxi, it is possible to obtain either
the real part of theweak valueReðhAiwÞ or its imaginary part
ImðhAiwÞ [5], thus providing a full measurement of the weak
value of the observable hAiw.

Several successful experimental implementations of
weak measurements have been accomplished up to date
in a wide range of scenarios: for demonstrating wave-
particle duality in the context of cavity-QED [6,7]; for
characterizing the response function of a highly dispersive
system [8]; for the realization of Leggett-Garg inequality
violations [9]; for detecting tiny spatial shifts [10,11] and
tiny temporal shifts [12], or tiny beam deflections [13], of
intense optical beams; for the direct measurement of the
wave function of a quantum system [14], or the weak value
of the polarization degrees of freedom of entangled photon
pairs [15].
In many applications, it can be important to access the

mean value of products of single-particle operators, i.e.,
hABi. Such joint measurements are of great relevance for
quantum information since they can contain information
about quantum correlations (entanglement) between differ-
ent degrees of freedom, as for instance in cluster-state quan-
tum computation [16]. However, a strong measurement of
joint meanvalues requires a nonlinear Hamiltonian, which in
many cases can prove hard to engineer [17]. Resch and
Steinberg [5] circumvented this limitation by employing a
two-dimensional Gaussian pointer state and a weakly cou-
pling linear Hamiltonian of the formH ¼ gAAPx þ gBBPy,

where (Px, Py) are the pointer momentum operators, con-

jugate to the pointer position operators (X,Y). By performing
a second order expansion in the two-dimensional pointer
displacement hXYi, the authors showed that it is possible to
extract the real part of the joint weak value hABiw, for the
case of commuting observables ½A; B� ¼ 0.
In this Letter, we show that by employing pointer states

endowed with orbital angular momentum (OAM), it is
possible to retrieve a wider range of second order weak
values. An important limitation of Gaussian pointer states
is that, due to symmetry properties, they can not provide
access to weak values of higher order moments of single-
particle operators, such as hAniw or hBniw, or to higher
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order moments of joint operators, such as hAnBiw or
hBnAiw (n > 1), for the case ½A; B� ¼ 0 [5]. Pointer states
with OAM introduce a different symmetry for the expec-
tation values of operators and thus provide access to the
weak values of higher order moments of single-particle
operators and joint operators, a result which is not attain-
able with Gaussian pointer states.

Moreover, in many applications employing Gaussian
pointer states, the weak amplification factor can only be
attained in the imaginary component of the weak value.
This can be seen as an advantage, as the amplified imagi-
nary part can have a simpler operational interpretation than
its real counterpart, since it is not tied to the conditioned
average value of an observable, and is rather linked to the
measurement back action [5,18]. However, in order to
extract such imaginary weak values, additional measure-
ments on the pointer’s conjugate variable are required.
Here we will show that OAM pointer states can provide
access to the enhanced imaginary part of higher order weak
values, thus outperforming Gaussian pointer states in terms
of signal enhancement and information retrieval.

Finally, we note that since the analytical determination
of upper bounds on amplification under the assumption of
Gaussian pointer wave function [19], much effort has been
devoted to the engineering of optimal probe states [20].
Here, we present a realistic, and experimentally feasible,
pointer distribution that can provide significant advantages
over Gaussian probe states and that could find several
applications both in the context of quantum information
and foundational tests of quantum mechanics [21], as
well as in weak measurements of cosmological effects,
such as in gravitational wave detection with higher order
Laguerre-Gauss beams [22], or the back action of the
Hawking radiation from a black hole [23].

Consider the weak interaction between two observables
A and B of a single-particle system initially prepared in
the state jii, with a measuring device initially prepared in
the state j�i ¼ R

dxdy�ðx; yÞjx; yi. The total input state is
jc ini ¼ jii � j�i. The Hamiltonian of weak interaction
H ¼ gAAPx þ gBBPy describes the coupling of observ-

able A with the x dimension of the measuring device while
observable B is coupled to its y dimension. Here x and y are
cartesian coordinates, and their associated position and
momentum quantum operators satisfy the usual commuta-
tion rules ½X; Y� ¼ 0 and ½Px; Py� ¼ 0, respectively. Also,

we restrict to the case of commuting observables of the
form ½A;B� ¼ 0, though more complex expressions can
also be obtained in the case where ½A; B� � 0.

We are interested in the mean value of the operator
OXY ¼ jfihfjXY at time t, where the projector jfihfj per-
forms the postselection operation on the system, and com-
mutes with all the spatial observables for the measuring
device. The time-dependent mean value hOXYðtÞi can be
obtained by expanding the Heisenberg’s equation of motion
to second order in the coupling parameters gA and gB [5]

hOXYðtÞi ¼ hOXYð0Þi þ it

@
h½H;OXY�i

� t2

2@2
h½H; ½H;OXY��i: (2)

The two-dimensional pointer states considered here are
described by Laguerre-Gauss (LG) modes. LG modes are a
set of solutions of the paraxial wave-equation [24], char-
acterized by two integer indices p and l. The index p is a
positive integer, and pþ 1 determines the number of
zeroes of the field along the radial direction. The winding
index l, which can take any integer number, determines the
azimuthal phase dependence of the mode, which is of the
form � expðil’Þ. Each mode carries a well-defined orbital
angular momentum of l@ per photon, associated with their
spiral wave fronts [25]. The OAM states of light allow for a
relatively simple experimental generation, filtering, detec-
tion, and control [26]. In this paper, we will concentrate
on the case p ¼ 0 and l ¼ 0, �1 since this is enough to
demonstrate the benefits of using OAM pointer states.
Specifically, the two-dimensional pointer distribution

considered here is described by [27]

�ðx; yÞ ¼ N½xþ isgnðlÞy�jlj exp
�
� x2 þ y2

4�2

�
; (3)

where � is the uncertainty in the pointer state, and N
is a normalizing constant so that

R
dxdyj�ðx; yÞj2 ¼ 1.

The case l ¼ 0 corresponds to a pointer state with a
2D-Gaussian distribution. In this case, the pointer state is
factorable in the two directions, and therefore can not be
used to retrieve higher order weak moments of A and B.
The case l ¼ �1 corresponds to states endowed with
orbital angular momentum (OAM). Now the pointer dis-
tribution is no longer factorable, and this is a key factor
to retrieve higher order weak moments of the form hA2iw
and hB2iw, as it will be shown below. Moreover, we note
that by considering larger values of l, it should be possible
to access weak values of a wider range of moments of
single-particle operators and joint operators.
Inspection of Eq. (2), and symmetry properties of

Gaussian integrals related to the specific shape of the pointer
states given by Eq. (3), show that the first non-zero term is
h½H; ½H;OXY��i, which is second order in the coupling
parameters. Higher order terms do not vanish either, but
they can be considered negligible if the coupling constants
gA and gB, and the duration of the interaction t, are suffi-
ciently small with respect to the pointer uncertainty �.
By making use of h�jPxXj�i¼h�jPyYj�i¼�i@=2, and

h�jXPxj�i ¼ h�jYPyj�i ¼ i@=2, and due to symmetry

properties of the chosen pointer states, we obtain

hXYi ¼ gAgBt
2

2
½ReðhABiwÞ þ ReðhAi�whBiwÞ�

þ l
t2

2
½g2AImðhA2iwÞ þ g2BImðhB2iwÞ�: (4)
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For l ¼ 0 (Gaussian pointer states), we recover the result
given in Ref. [5]. For l ¼ �1 (OAM pointer states), we
obtain additional terms proportional to g2At

2ImðhA2iwÞ and
g2Bt

2ImðhB2iwÞ, thus providing access to the imaginary part
of the second order weak values, a quantity which cannot be
retrieved using Gaussian pointer states only.

Note that in an experiment one measures hXYi, which
contains both the joint weak value hABiw and the squared
weak values of single-particle operators hA2iw and hB2iw.
In order to address the second order weak moments of
A and B, we can perform two separate measurements: a
first one with a Gaussian pointer state, thus obtaining
Eq. (4) with l ¼ 0, and a second one with an OAM pointer
state. By subtracting these two measurements, it is possible
to obtain the imaginary part of the second order weak value.
Also, by measuring the combined position-momentum
pointer shift hYPxi, it is possible to access a term propor-
tional to ReðhA2iwÞ while by measuring the complementary
shift hXPyi, one can access a term proportional to

ReðhB2iwÞ. In this way it is possible to extract the real parts
of the second order weak values. Second order weak values
for operators A or B can also be addressed separately, by
considering independent Hamiltonians (i.e., taking either
B � 0, or A � 0, respectively), as explained below.

We now consider in detail the case of a single observable
weakly coupled to the measuring device (i.e., B � 0).
Equation (4) shows that for jlj> 0, an interaction that
only couples the observable A to the pointer can show a
nonzero expectation value for hXYi while for Gaussian
pointer states (l ¼ 0) this is not the case. Specifically, for
pointer states endowed with OAM, we obtain

hXYi ¼ l
ðgAtÞ2
2

ImðhA2iwÞ: (5)

Equation (5) shows that it is possible to measure a value for
hXYi � 0, even when the weak interaction does not couple
the y dimension of the pointer with the observable A
directly. This is due to the fact that the pointer state given
in Eq. (3) is not factorable in the x and y dimensions so the
coupling of the observable A with the x dimension of the
pointer also affects its y dimension. Equation (5) is quite
significant as it readily shows that by employing OAM
pointer states, and by measuring the corresponding two-
dimensional pointer shift hXYi, we can obtain an imaginary
weak value. We note that the imaginary part of the weak
value provides information about the instantaneous rate of
change in the probability due to the measurement process
(i.e., back action mechanism) [5,18]. Such rate of change is
usually linked to the pointer’s conjugate variable. In our
case, the nonfactorability of the two-dimensional pointer
spatial distribution produces a similar effect in the spatial
domain, which can, in turn, be exploited to amplify the
spatial shift in a situation where Gaussian states cannot
provide an equivalent enhancement factor.

Finally, we present a simple example that, nevertheless,
fully demonstrates the advantages of employing OAM

pointer states both in terms of signal amplification and
information retrieval. We consider a specific configuration
that can be experimentally implemented. This makes use of
the ideas described above and will help to clearly reveal the
advantages of employing an OAM pointer state versus its
Gaussian counterpart. Consider a specific observable given
by a spin-1=2 matrix A or the polarization degrees of
freedom of the radiation field. Such observable, which
can be regarded generally as a linear combination of
Pauli matrices [28], has the following form

A ¼ 9=5 2i=5

�2i=5 6=5

 !
: (6)

To see its physical meaning in a weak measurement
context, we can calculate its eigenstates a and b and the
corresponding eigenvalues �1 and �2, respectively

�1 ¼ 1; jai ¼ ð1= ffiffiffi
5

p ÞðjHi þ 2ijViÞ
�2 ¼ 2; jbi ¼ ð1= ffiffiffi

5
p Þð2ijHi þ jViÞ:

(7)

Therefore, an interaction Hamiltonian of the form
H ¼ gAAPx (B � 0) describes a process where for an
arbitrary input polarization, the jai component is shifted
by an amount � ¼ gAt while the jbi component is shifted
by 2�. The initial state of the system is jii ¼ jHi, and
the initial shape of the pointer is characterized by the
distribution �ðx; yÞ given by Eq. (3). The initial state of
the system and pointer is factorable and is given by jc ini ¼
jHi � R

dxdy�ðx; yÞjxijyi.
The weak coupling interaction entangles the states of

the system and pointer such that the resulting output state
can be written as

jc outi ¼
Z

dxdy½�ðx��; yÞjai
� 2i�ðx� 2�; yÞjbi�jx; yi: (8)

The output state is projected into a nearly orthogonal state for
the system jfi ¼ sin�jHi þ cos�jVi so that hfjii ¼ sin�,
with � small. When considering the OAM pointer distribu-
tion given inEq. (3), the expectationvalue of the pointer shift,
up to second order in �, is given by

hXYi ¼ � 3l

5

�2

tan�
: (9)

Note that when using a Gaussian pointer state (here labeled
with the subscript G), we obtain hXYiG ¼ 0, and the usual
one-dimensional mean value hXiG is

hXiG ¼ 9

5
�: (10)

We also compare the first order weak value, given by

hAiw ¼ 9

5
� i

2

5

1

tan�
; (11)

with the higher order weak value, given by
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hA2iw ¼ 17

5
� i

6

5

1

tan�
: (12)

Two points should be highlighted in this example. First,
OAMpointer states allow retrieval of the imaginary part of
the weak value hA2iw, a feature which is not accessible
with Gaussian pointer states. Second, Eq. (10) shows that
there is no weak amplification in the position shift for a
Gaussian pointer state. There is however amplification
in the momentum shift hPxiG, which is related to the
imaginary part of the weak value [Eq. (11)]. On the other
hand, the higher order weak value [Eq. (12)] shows
enhancement for small �. This, as shown in Eq. (5), allows
for weak amplification of the two-dimensional position
shift hXYi. We note that an important requirement in order
to obtain such OAM enhancement is a nonvanishing
imaginary part for the second order weak value (i.e.,
ImðhA2iwÞ � 0). This can, in turn, be interpreted as a
specific form of ellipticity for the eigenvectors of the
system observable A [29].

To conclude, we presented a novel scheme for weak
measurements that relies on the use of pointer states endowed
with orbital angularmomentum (OAM).We have shown that
such higher-dimensional weak measurements can provide
access to higher order weak moments of single-particle
operators. In particular, for pointer states containing OAM
with winding number l ¼ �1, it is possible to measure the
weak value of the square of single-particle observables.

We have also shown that by considering a single-particle
operator and a two-dimensional OAM pointer state, it is
possible to measure an imaginary weak value via a two-
dimensional pointer position shift. This result is unexpected
since it is usually believed that imaginary weak values are
only accessible through the expectationvalue of the pointer’s
conjugate variable. In addition, we have demonstrated, by
means of an example, that the use of OAM pointer states can
provide weak amplification in configurations where the use
of Gaussian pointer states cannot, thus allowing for a much
wider range of applicability. For instance, one can engineer
OAM states with higher winding numbers, or superpositions
of OAM states, to obtain the sought-after higher order weak
values that show the required enhancement.

The results presented here open the door to a number
of novel fundamental and technological applications
[16,21–23]. Furthermore, we emphasize that the use of
pointer states with OAM is not restricted to radiation
fields, and could also be envisioned in the context of
Bose-Einstein condensates, where the coherent transfer
of OAM of photons to matter can be used to create atomic
vortex states [30].
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