66 research outputs found

    Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010

    Get PDF
    Arrays of GPS Ionospheric Scintillation and TEC Monitors (GISTMs) are used in a comparative scintillation study focusing on quasi-conjugate pairs of GPS receivers in the Arctic and Antarctic. Intense GPS phase scintillation and rapid variations in ionospheric total electron content (TEC) that can result in cycle slips were observed at high latitudes with dual-frequency GPS receivers during the first significant geomagnetic storm of solar cycle 24 on 5–7 April 2010. The impact of a bipolar magnetic cloud of north-south (NS) type embedded in high speed solar wind from a coronal hole caused a geomagnetic storm with maximum 3-hourly Kp = 8- and hourly ring current Dst =−73 nT. The interhemispheric comparison of phase scintillation reveals similarities but also asymmetries of the ionospheric response in the northern and southern auroral zones, cusps and polar caps. In the nightside auroral oval and in the cusp/cleft sectors the phase scintillation was observed in both hemispheres at about the same times and was correlated with geomagnetic activity. The scintillation level was very similar in approximately conjugate locations in Qiqiktarjuaq (75.4° N; 23.4° E CGM lat. and lon.) and South Pole (74.1° S; 18.9° E), in Longyearbyen (75.3° N; 111.2° E) and Zhongshan (74.7° S; 96.7° E), while it was significantly higher in Cambridge Bay (77.0° N; 310.1° E) than at Mario Zucchelli (80.0° S; 307.7° E). In the polar cap, when the interplanetary magnetic field (IMF) was strongly northward, the ionization due to energetic particle precipitation was a likely cause of scintillation that was stronger at Concordia (88.8° S; 54.4° E) in the dark ionosphere than in the sunlit ionosphere over Eureka (88.1° N; 333.4° E), due to a difference in ionospheric conductivity. When the IMF tilted southward, weak or no significant scintillation was detected in the northern polar cap, while in the southern polar cap rapidly varying TEC and strong phase scintillation persisted for many hours. This interhemispheric asymmetry is explained by the difference in the location of solar terminator relative to the cusps in the Northern and Southern Hemisphere. Solar terminator was in the immediate proximity of the cusp in the Southern Hemisphere where sunlit ionospheric plasma was readily convected into the central polar cap and a long series of patches was observed. In contrast, solar terminator was far poleward of the northern cusp thus reducing the entry of sunlit plasma and formation of dense patches. This is consistent with the observed and modeled seasonal variation in occurrence of polar cap patches. The GPS scintillation and TEC data analysis is supported by data from ground-based networks of magnetometers, riometers, ionosondes, HF radars and all-sky imagers, as well as particle flux measurements by DMSP satellites

    GPS phase scintillation at high latitudes during geomagnetic storms of 7-17 March 2012, part 2: interhemispheric comparison

    Get PDF
    During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs) in the period 7–17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time (MLT), the scintillation was observed in the ionospheric cusp, the tongue of ionization fragmented into patches, sun-aligned arcs in the polar cap, and nightside auroral oval and subauroral latitudes. Complementing a companion paper (Prikryl et al., 2015a) that focuses on the high latitude ionospheric response to variable solar wind in the North American sector, interhemispheric comparison reveals commonalities as well as differences and asymmetries between the northern and southern high latitudes, as a consequence of the coupling between the solar wind and magnetosphere. The interhemispheric asymmetries are caused by the dawn–dusk component of the interplanetary magnetic field controlling the MLT of the cusp entry of the storm enhanced density plasma into the polar cap and the orientation relative to the noon–midnight meridian of the tongue of ionization

    An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite

    Get PDF
    The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate) obtained from 1-Hz GPS data. The scintillation occurrence coincided with the aurora borealis and aurora australis observed by an all-sky imager at the South Pole, and by special sensor ultraviolet scanning imagers on board satellites of the Defense Meteorological Satellites Program. The South Pole (SP) station is approximately conjugate with two Canadian High Arctic Ionospheric Network stations on Baffin Island, Canada, which provided the opportunity to study magnetic conjugacy of scintillation with support of riometers and magnetometers. The GPS ionospheric pierce points were mapped at their actual or conjugate locations, along with the auroral emission over the South Pole, assuming an altitude of 120 km. As the aurora brightened and/or drifted across the field of view of the all-sky imager, sequences of scintillation events were observed that indicated conjugate auroras as a locator of simultaneous or delayed bipolar scintillation events. In spite of the greater scintillation intensity in the auroral oval, where phase scintillation sometimes exceeded 1 radian during the auroral break-up and substorms, the percentage occurrence of moderate scintillation was highest in the cusp. Interhemispheric comparisons of bipolar scintillation maps show that the scintillation occurrence is significantly higher in the southern cusp and polar cap

    Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes

    Full text link
    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to I(Na-L)significantly increases intracellular Na+, [Na]; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]; which may further enhance I(Na-L)due to calmodulindependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2(+)]; homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (<= 1.5 mM) in [Na] even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na] when I(Na-L)was increased. Based on our simulations, the major short-term effect of markedly augmenting I(Na-L)is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, Ica-L. Furthermore, this action potential prolongation does not contribute to [Na]; increase.This work was supported by (i) the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds-ERDF-FEDER), (ii) by the Direccion General de Politica Cientifica de la Generalitat Valenciana (grant number GV/2013/119), and by (iii), Programa Prometeo (PROMETEO/2016/088) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.K Cardona; Trénor Gomis, BA.; W Giles (2016). Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes. PLoS ONE. 11(11). https://doi.org/10.1371/journal.pone.0167060S111

    Coccidiosis in green turtles (chelonia mydas) in Australia: Pathogenesis, spatial and temporal distribution, and climate-related determinants of disease outbreaks

    Get PDF
    An epizootic of coccidiosis in free-ranging green turtles (Chelonia mydas) occurred in Australia in 1991 and the parasites were thought to be Caryospora cheloniae. Recurring outbreaks over an increased geographic range followed. We used medical records and temporal and spatial data of turtles diagnosed with coccidiosis between 1991 and 2014 to characterize the disease and factors associated with outbreaks. Most affected animals were subadults or older. Neurologic signs with intralesional cerebral coccidia were observed. Coccidia associated with inflammation and necrosis were predominantly found in the intestine, brain, kidney, and thyroid. Cases occurred in the spring and summer. Three major outbreaks (1991, 2002, and 2014) were concentrated in Port Stephens, New South Wales (NSW) and Moreton Bay, Queensland (QLD), but cases occurred as far south as Sydney, NSW. Coccidiosis cases were more likely during, or 1 mo prior to, El Niño–like events. Molecular characterization of the 18S rRNA locus of coccidia from tissues of 10 green turtles collected in 2002 and 2004 in Port Stevens and Sydney imply that they were Schellackia-like organisms. Two sequences were identified. The genotype 3 sequence was most common (in eight of 10 turtles), with 98.8% similarity to the 18S sequence of Schellackia orientalis. The Genotype 4 sequence was less common (in two of 10 turtles) with 99.7% similarity to the 18S sequence of the most common genotype (Genotype 1) detected in turtles from the 2014 Moreton Bay outbreak. Our study will help with the identification and management of future outbreaks and provide tools for identification of additional disease patterns in green turtles
    • …
    corecore