22 research outputs found

    Detecting unilateral phrenic paralysis by acoustic respiratory analysis

    Get PDF
    The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently normal state. Acoustic analysis of lung sound intensity (LSI) could be an indirect non-invasive measurement of respiratory muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women), during progressive increasing airflow maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides. LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LSI was significantly greater on the normal (19.3±4.0 dB) than the affected (5.7±3.5 dB) side in all patients (p = 0.0002), differences ranging from 9.9 to 21.3 dB (13.5±3.5 dB). In the healthy subjects, the LSI was similar on both left (15.1±6.3 dB) and right (17.4±5.7 dB) sides (p = 0.2730), differences ranging from 0.4 to 4.6 dB (2.3±1.6 dB). There was a positive linear relationship between the LSI and the airflow, with clear differences between the slope of patients (about 5 dB/L/s) and healthy subjects (about 10 dB/L/s). Furthermore, the LSI from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in LSI between healthy and paralyzed sides was higher in patients with lower FEV1 (%). The acoustic analysis of LSI is a relevant non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of unilateral phrenic paralysis, as well as the monitoring of these patients.Peer ReviewedPostprint (published version

    Interleukin-15 Plays a Central Role in Human Kidney Physiology and Cancer through the Îłc Signaling Pathway

    Get PDF
    The ability of Interleukin-15 (IL-15) to activate many immune antitumor mechanisms renders the cytokine a good candidate for the therapy of solid tumors, particularly renal cell carcinoma. Although IL-15 is being currently used in clinical trials, the function of the cytokine on kidney's components has not been extensively studied; we thus investigated the role of IL-15 on normal and tumor renal epithelial cells. Herein, we analyzed the expression and the biological functions of IL-15 in normal renal proximal tubuli (RPTEC) and in their neoplastic counterparts, the renal clear cell carcinomas (RCC). This study shows that RPTEC express a functional heterotrimeric IL-15Rαβγc complex whose stimulation with physiologic concentrations of rhIL-15 is sufficient to inhibit epithelial mesenchymal transition (EMT) commitment preserving E-cadherin expression. Indeed, IL-15 is not only a survival factor for epithelial cells, but it can also preserve the renal epithelial phenotype through the γc-signaling pathway, demonstrating that the cytokine possess a wide range of action in epithelial homeostasis. In contrast, in RCC in vitro and in vivo studies reveal a defect in the expression of γc-receptor and JAK3 associated kinase, which strongly impacts IL-15 signaling. Indeed, in the absence of the γc/JAK3 couple we demonstrate the assembly of an unprecedented functional high affinity IL-15Rαβ heterodimer, that in response to physiologic concentrations of IL-15, triggers an unbalanced signal causing the down-regulation of the tumor suppressor gene E-cadherin, favoring RCC EMT process. Remarkably, the rescue of IL-15/γc-dependent signaling (STAT5), by co-transfecting γc and JAK3 in RCC, inhibits EMT reversion. In conclusion, these data highlight the central role of IL-15 and γc-receptor signaling in renal homeostasis through the control of E-cadherin expression and preservation of epithelial phenotype both in RPTEC (up-regulation) and RCC (down-regulation)

    The Critical Role of the Cytoskeleton in the Pathogenesis of Giardia

    No full text
    Giardia lamblia is a flagellated parasite of the gut and causes significant morbidity worldwide. Novel druggable targets are sorely needed due to Giardia’s prevalence and the growing threat of antibiotic resistance. Giardia’s conserved and unique cytoskeletal features, such as its eight flagella and ventral disc, are required for host colonization by facilitating motility, attachment, and cell division. Therapies that target these processes could interfere with trophozoite colonization, reduce the time or severity of the infection, and reduce the number of infectious cysts shed into the environment. This requires vetting and prioritizing critical cellular processes and identifying specific Giardia proteins in those processes as targets. It is time to leverage the wealth of data gathered through genome sequencing and proteomic studies, and new insights on the cytoskeleton of Giardia to design effective new drugs to treat giardiasis

    Acute pain intensity monitoring with the classification of multiple physiological parameters.

    No full text
    Current acute pain intensity assessment tools are mainly based on self-reporting by patients, which is impractical for non-communicative, sedated or critically ill patients. In previous studies, various physiological signals have been observed qualitatively as a potential pain intensity index. On the basis of that, this study aims at developing a continuous pain monitoring method with the classification of multiple physiological parameters. Heart rate (HR), breath rate (BR), galvanic skin response (GSR) and facial surface electromyogram were collected from 30 healthy volunteers under thermal and electrical pain stimuli. The collected samples were labelled as no pain, mild pain or moderate/severe pain based on a self-reported visual analogue scale. The patterns of these three classes were first observed from the distribution of the 13 processed physiological parameters. Then, artificial neural network classifiers were trained, validated and tested with the physiological parameters. The average classification accuracy was 70.6%. The same method was applied to the medians of each class in each test and accuracy was improved to 83.3%. With facial electromyogram, the adaptivity of this method to a new subject was improved as the recognition accuracy of moderate/severe pain in leave-one-subject-out cross-validation was promoted from 74.9 ± 21.0 to 76.3 ± 18.1%. Among healthy volunteers, GSR, HR and BR were better correlated to pain intensity variations than facial muscle activities. The classification of multiple accessible physiological parameters can potentially provide a way to differentiate among no, mild and moderate/severe acute experimental pain
    corecore