22 research outputs found

    IFT proteins interact with HSET to promote supernumerary centrosome clustering in mitosis.

    Get PDF
    Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock-down of various IFT proteins or AID-inducible degradation of endogenous IFT88 in combination with small-molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high-resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes

    Analysis of the impact of length of stay on the quality of service experience, satisfaction and loyalty

    Get PDF
    Although length of stay is a relevant variable in destination management, little research has been produced connecting it with tourists' post-consumption behaviour. This research compares the post-consumption behaviour of same-day visitors with overnight tourists in a sample of 398 domestic vacationers at two Mediterranean heritage-and-beach destinations. Although economic research on length of stay posits that there are destination benefits in longer stays, same-day visitors score higher in most of the post-consumption variables under study. Significant differences arise in hedonic aspects of the tourist experience and destination loyalty. Thus, we propose that length of stay can be used as a segmentation variable. Furthermore, destination management organisations need to consider length of stay when designing tourism policies. The tourist product and communication strategies might be adapted to different vacation durations

    A Membrane Fusion Protein αSNAP Is a Novel Regulator of Epithelial Apical Junctions

    Get PDF
    Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins

    Novel p47phox-Related Organizers Regulate Localized NADPH Oxidase 1 (Nox1) Activity

    No full text
    corecore