3,587 research outputs found

    Dehalococcoides spp. in river sediments: insights in functional diversity and dechlorination activity

    Get PDF
    In dit proefschrift staan Dehaloccoides spp. centraal vanwege hun vermogen één van deze gechloreerde verbindingen, hexachloorbenzeen (HCB), af te breken tot een verbinding met minder chlooratomen. HCB werd tot voor kort voornamelijk toegepast als fungicide en pesticide en kan bijvoorbeeld vrijkomen bij de productie van synthetisch rubber. Daarnaast wordt het gevormd als bijproduct tijdens de productie van oplosmiddelen en pesticiden. HCB is kankerverwekkend, giftig en hoopt zich op in ecosystemen. Tegenwoordig is het gebruik ervan binnen de E.U. dan ook verboden, maar omdat de stof erg moeilijk afbreekbaar is zal deze nog gedurende lange tijd worden teruggevonden in het milieu. Grootschalig onderzoek is gedaan naar de aanwezigheid, activiteit en het dechlorinerende vermogen van Dehalococcoides spp. in riviersedimenten en de bodems in uiterwaarden van verschillende Europese rivieren (Elbe, Donau, Maas, Ebro, Brevilles)

    Unidirectional Invisibility and PT-Symmetry with Graphene

    Full text link
    We investigate the reflectionlessness and invisibility properties in the transverse electric (TE) mode solution of a linear homogeneous optical system which comprises the PT\mathcal{PT}-symmetric structures covered by graphene sheets. We derive analytic expressions, indicate roles of each parameter governing optical system with graphene and justify that optimal conditions of these parameters give rise to broadband and wide angle invisibility. Presence of graphene turns out to shift the invisible wavelength range and to reduce the required gain amount considerably, based on its chemical potential and temperature. We substantiate that our results yield broadband reflectionless and invisible configurations for realistic materials of small refractive indices, usually around η=1\eta = 1, and of small thickness sizes with graphene sheets of rather small temperatures and chemical potentials. Finally, we demonstrate that pure PT\mathcal{PT}-symmetric graphene yields invisibility at small temperatures and chemical potentials.Comment: 20 pages, 1 table 17 figure

    Capillary origami of micro-machined micro-objects: Bi-layer conductive hinges

    Get PDF
    Recently, we demonstrated controllable 3D self-folding by means of capillary forces of silicon-nitride micro-objects made of rigid plates connected to each other by flexible hinges [1]. In this paper, we introduce platinum electrodes running from the substrate to the plates over these bendable hinges. The fabrication yield is as high as (77 +/- 2) % for hinges with a length less than 75 {\mu}m. The yield reduces to (18 +/- 2) % when the length increases above 100 {\mu}m. Most of the failures in conductivity are due to degradation of the platinum/chromium layer stack during the final plasma cleaning step. The bi-layer hinges survive the capillary folding process, even for extremely small bending radii of 5 {\mu}m, nor does the bending have any impact on the conductivity. Stress in the different layers deforms the hinges, which does not affect the conductivity. Once assembled, the conductive hinges can withstand a current density of (1.6 +/- 0.4) 10610^6 A/cm2^2 . This introduction of conductive electrodes to elastocapillary self-folded silicon-based micro-objects extends the range of their possible applications by allowing an electronic functionality of the folded parts.Comment: Currently on a peer review process. 13 page

    Elastocapillary folding using stop-programmable hinges fabricated by 3D micro-machining

    Get PDF
    We show elasto-capillary folding of silicon nitride objects with accurate folding angles between flaps of 70.6±\pm0.1{\deg} and demonstrate the feasibility of such accurate micro-assembly with a final folding angle of 90{\deg}. The folding angle is defined by stop-programmable hinges that are fabricated starting from silicon molds employing accurate three-dimensional corner lithography. This nano-patterning method exploits the conformal deposition and the subsequent timed isotropic etching of a thin film in a 3D shaped silicon template. The technique leaves a residue of the thin film in sharp concave corners which can be used as an inversion mask in subsequent steps. Hinges designed to stop the folding at 70.6{\deg} were fabricated batchwise by machining the V-grooves obtained by KOH etching in (110) silicon wafers; 90{\deg} stop-programmable hinges were obtained starting from silicon molds obtained by dry etching on (100) wafers. The presented technique is applicable to any folding angle and opens a new route towards creating structures with increased complexity, which will ultimately lead to a novel method for device fabrication.Comment: Submitted to a peer reviewed journa

    Nonequilibrium Electron Interactions in Metal Films

    Full text link
    Ultrafast relaxation dynamics of an athermal electron distribution is investigated in silver films using a femtosecond pump-probe technique with 18 fs pulses in off-resonant conditions. The results yield evidence for an increase with time of the electron-gas energy loss rate to the lattice and of the free electron damping during the early stages of the electron-gas thermalization. These effects are attributed to transient alterations of the electron average scattering processes due to the athermal nature of the electron gas, in agreement with numerical simulations

    Electronic band structure and carrier effective mass in calcium aluminates

    Get PDF
    First-principles electronic band structure investigations of five compounds of the CaO-Al2O3 family, 3CaO.Al2O3, 12CaO.7Al2O3, CaO.Al2O3, CaO.2Al2O3 and CaO.6Al2O3, as well as CaO and alpha-, theta- and kappa-Al2O3 are performed. We find that the conduction band in the complex oxides is formed from the oxygen antibonding p-states and, although the band gap in Al2O3 is almost twice larger than in CaO, the s-states of both cations. Such a hybrid nature of the conduction band leads to isotropic electron effective masses which are nearly the same for all compounds investigated. This insensitivity of the effective mass to variations in the composition and structure suggests that upon a proper degenerate doping, both amorphous and crystalline phases of the materials will possess mobile extra electrons
    corecore