9 research outputs found

    The Application of PCR and STR DNA Profiling for the Identification of Haematoxylin Eosin Histological Slides in a Case of Sample Mix-Up Involving Synonymous Patients

    Get PDF
    A good laboratory practice ensures that biopsy material is correctly identified and associated with a given patient. Nevertheless, there are cases where the proof of origin of a tissue sample may be questioned. In this case study we have identified the source of cervical cancer glass slide sections stained with H/E, (hematoxylin eosin), after the request of a patient of Northern Greek origin who suspected sample mix-up when she coincidentally found out that a synonymous patient was examined for cervical cancer at the same time period in the same hospital in Greece. The patient was prepared to legally challenge the administrators of the downstream chemotherapeutic regimen. A combination of organic gradient clean up and silica membrane method was used for DNA isolation. Powerplex-16® system (Promega U.S.A) was used to generate complete DNA profiles from histological slides and the reference blood sample collected from the patient. Histochemical slides often yield inadequate STR profiles for successful DNA typing. Complete profiling in this case could be attributed to the adequate removal of stain and fixatives inhibitors and the isolation of good quality DNA for PCR or STR, protocols. Matching of histochemical slide DNA with patient blood DNA prevented legal action

    Novel retinoic acid metabolism blocking agents have potent inhibitory activities on human breast cancer cells and tumour growth

    Get PDF
    Antitumour effects of retinoids are attributed to their influence on cell proliferation, differentiation, apoptosis and angiogenesis. In our effort to develop useful agents for breast cancer therapy, we evaluated the effects of four representative retinoic acid metabolism blocking agents (RAMBAs, VN/14-1, VN/50-1, VN/66-1 and VN/69-1) on growth inhibition of oestrogen receptor positive (ER +ve, MCF-7 and T-47D) and oestrogen receptor negative (ER −ve, MDA-MB-231) human breast cancer cells. Additionally, we investigated the biological effects/molecular mechanism(s) underlying their growth inhibitory properties as well as their antitumour efficacies against MCF-7 and MCF-7Ca tumour xenografts in nude mice. We also assessed the effect of combining VN/14-1 and all-trans-retinoic acid (ATRA) on MCF-7 tumuor xenografts. The ER +ve cell lines were more sensitive (IC50 values between 3.0 and 609 nM) to the RAMBAs than the ER −ve MDA-MB-231 cell line (IC50=5.6–24.0 μM). Retinoic acid metabolism blocking agents induced cell differentiation as determined by increased expression of cytokeratin 8/18 and oestrogen receptor-α (ER-α). Similar to ATRA, they also induced apoptosis via activation of caspase 9. Cell cycle analysis indicated that RAMBAs arrested cells in the G1 and G2/M phases and caused significant downregulation (>80%) of cyclin D1 protein. In vivo, the growth of MCF-7 mammary tumours was dose-dependently and significantly inhibited (92.6%, P<0.0005) by VN/14-1. The combination of VN/14-1 and ATRA also inhibited MCF-7 breast tumour growth in vivo (up to 120%) as compared with single agents (P<0.025). VN/14-1 was also very effective in preventing the formation of MCF-7Ca tumours and it significantly inhibited the growth of established MCF-7Ca tumours, being as effective as the clinically used aromatase inhibitors, anastrozole and letrozole. Decrease in cyclin D1 and upregulation of cytokeratins, Bad and Bax with VN/14-1 may be responsible for the efficacy of this compound in inhibiting breast cancer cell growth in vitro and in vivo. Our results suggest that our RAMBAs, especially VN/14-1 may be useful novel therapy for breast cancer

    Human leukocyte antigen class-I variation is associated with atopic dermatitis: A case-control study.

    No full text
    Atopic dermatitis (AD) is a common immune-medicated skin disease. Previous studies have explored the relationship between Human Leukocyte Antigen (HLA) allelic variation and AD with conflicting results. The aim was to examine HLA Class I genetic variation, specifically peptide binding groove variation, and associations with AD. A case-control study was designed to evaluate HLA class I allelic variation and binding pocket polymorphisms, using next generation sequencing on 464 subjects with AD and 388 without AD. Logistic regression was used to evaluate associations with AD by estimating odds ratios (95% confidence intervals). Significant associations were noted with susceptibility to AD (B*53:01) and protection from AD (A*01:01, A*02:01, B*07:02 and C*07:02). Evaluation of polymorphic residues in Class I binding pockets revealed six amino acid residues conferring protection against AD: A9F (HLA-A, position 9, phenylalanine) [pocket B/C], A97I [pocket C/E], A152V [pocket E], A156R [pocket D/E], B163E [pocket A] and C116S [pocket F]. These findings demonstrate that specific HLA class I components are associated with susceptibility or protection from AD. Individual amino acid residues are relevant to protection from AD and set the foundation for evaluating potential HLA Class I molecules in complex with peptides/antigens that may initiate or interfere with T-cell responses
    corecore