245 research outputs found

    First Results from the Large Area Lyman Alpha Survey

    Get PDF
    We report on a new survey for z=4.5 Lyman alpha sources, the Large Area Lyman Alpha (LALA) survey. Our survey achieves an unprecedented combination of volume and sensitivity by using narrow-band filters on the new 8192x8192 pixel CCD Mosaic Camera at the 4 meter Mayall telescope of Kitt Peak National Observatory. Well-detected sources with flux and equivalent width matching known high redshift Lyman alpha galaxies (i.e., observed equivalent width above 80 Angstroms and line+continuum flux between 2.6e-17 and 5.2e-17 erg/cm^2/sec in an 80 Angstrom filter) have an observed surface density corresponding to 11000 +- 700 per square degree per unit redshift at z=4.5. Spatial variation in this surface density is apparent on comparison between counts in 6561 and 6730 Angstrom filters. Early spectroscopic followup results from the Keck telescope included three sources meeting our criteria for good Lyman alpha candidates. Of these, one is confirmed as a z=4.52 source, while another remains consistent with either z=4.55 or z=0.81. We infer that 30 to 50% of our good candidates are bona fide Lyman alpha emitters, implying a net density of about 4000 Lyman alpha galaxies per square degree per unit redshift.Comment: 10 pages, 2 figures (3 .ps files), uses AASTeX 4. Submitted to The Astrophysical Journal Letter

    Computing NodeTrix Representations of Clustered Graphs

    Full text link
    NodeTrix representations are a popular way to visualize clustered graphs; they represent clusters as adjacency matrices and inter-cluster edges as curves connecting the matrix boundaries. We study the complexity of constructing NodeTrix representations focusing on planarity testing problems, and we show several NP-completeness results and some polynomial-time algorithms. Building on such algorithms we develop a JavaScript library for NodeTrix representations aimed at reducing the crossings between edges incident to the same matrix.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Scattered Nuclear Continuum and Broad H-alpha in Cygnus A

    Full text link
    We have discovered scattered broad Balmer emission lines in the spectrum of Cygnus A, using the Keck II telescope. Broad H-alpha appears in polarized flux from components on either side of the nucleus, and to a lesser extent in the nucleus. The full-width at half-maximum of broad H-alpha is 26,000 km/s, comparable to the widest emission lines seen in broad-line radio galaxies. Scattered AGN light provides a significant contribution to the total flux at 3800 Angstroms (rest) of the western component, where the polarization rises to 16%. The spatially integrated flux of Cygnus A at 5500 Angstroms can be decomposed into an elliptical galaxy fraction (Fg=0.70), a highly polarized blue component (FC1=0.15), a less polarized red component (FC=0.09), and a contribution from the nebular continuum (0.06). Imaging polarimetry shows a double fan of polarization vectors with circular symmetry which corresponds to the ionization cone seen in HST images. Our results are consistent with scattering of light from a hidden quasar of modest luminosity by an extended, dusty narrow-line region.Comment: 13 pages, 4 figures, Latex, to appear in ApJ Letter

    A Chandra X-ray Study of Cygnus A - II. The Nucleus

    Full text link
    We report Chandra ACIS and quasi-simultaneous RXTE observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (> a few keV) X-ray emission is spatially unresolved with a size \approxlt 1 arcsec (1.5 kpc, H_0 = 50 km s^-1 Mpc^-1) and coincides with the radio and near infrared nuclei. In contrast, the soft (< 2 keV) emission exhibits a bi-polar nebulosity that aligns with the optical bi-polar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] \lambda 5007 and H\alpha + [N II] \lambda\lambda 6548, 6583 nebulosity imaged with HST. At the location of the nucleus there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the 6 detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power law spectrum with \Gamma_h = 1.52^{+0.12}_{-0.12} (similar to other narrow line radio galaxies) and equivalent hydrogen column N_H (nuc) = 2.0^{+0.1}_{-0.2} \times 10^{23} cm^-2. (Abstract truncated).Comment: To be published in the Astrophysical Journal, v564 January 1, 2002 issue; 34 pages, 11 figures (1 color

    Probing the time dependence of dark energy

    Full text link
    A new method to investigate a possible time-dependence of the dark energy equation of state ww is proposed. We apply this methodology to two of the most recent data sets of type Ia supernova (Union2 and SDSS) and the baryon acoustic oscillation peak at z=0.35z = 0.35. For some combinations of these data, we show that there is a clear departure from the standard Λ\LambdaCDM model at intermediary redshifts, although a non-evolving dark energy component (dw/dz=0dw/dz = 0) cannot be ruled out by these data. The approach developed here may be useful to probe a possible evolving dark energy component when applied to upcoming observational data.Comment: 6 pages, 3 figures, LaTe

    On strongly chordal graphs that are not leaf powers

    Full text link
    A common task in phylogenetics is to find an evolutionary tree representing proximity relationships between species. This motivates the notion of leaf powers: a graph G = (V, E) is a leaf power if there exist a tree T on leafset V and a threshold k such that uv is an edge if and only if the distance between u and v in T is at most k. Characterizing leaf powers is a challenging open problem, along with determining the complexity of their recognition. This is in part due to the fact that few graphs are known to not be leaf powers, as such graphs are difficult to construct. Recently, Nevries and Rosenke asked if leaf powers could be characterized by strong chordality and a finite set of forbidden subgraphs. In this paper, we provide a negative answer to this question, by exhibiting an infinite family \G of (minimal) strongly chordal graphs that are not leaf powers. During the process, we establish a connection between leaf powers, alternating cycles and quartet compatibility. We also show that deciding if a chordal graph is \G-free is NP-complete, which may provide insight on the complexity of the leaf power recognition problem

    The Cluster of Galaxies Surrounding Cygnus A

    Full text link
    We report optical imaging and spectroscopy of 41 galaxies in a 22 arcmin square region surrounding Cygnus A. The results show that there is an extensive rich cluster associated with Cygnus A of Abell richness at least 1 and possibly as high as 4. The velocity histogram has two peaks, one centered on Cygnus A, and a more significant peak redshifted by about 2060 km/s from the velocity of Cygnus A. The dynamical centroid of the spatial distribution is also shifted somewhat to the NW. However, statistical tests show only weak evidence that there are two distinct clusters. The entire system has a velocity dispersion of 1581 km/s which is slightly larger than other, well studied, examples of rich clusters.Comment: 11 pages LaTeX, 1 table, 3 postscript figures. Accepted for publication in Ap.J. Letter

    UV Spectropolarimetry of Narrow-line Radio Galaxies

    Get PDF
    We present the results of UV spectropolarimetry (2000 - 3000A) and far-UV spectroscopy (1500 - 2000A) of two low-redshift narrow-line radio galaxies (NLRGs) taken with the Faint Object Spectrograph onboard the Hubble Space Telescope (HST). Spectropolarimetry of several NLRGs has shown that, by the presence of broad permitted lines in polarized flux spectrum, they have hidden quasars seen through scattered light. Imaging polarimetry has shown that NLRGs including our targets often have large scattering regions of a few kpc to >~10 kpc scale. This has posed a problem about the nature of the scatterers in these radio galaxies. Their polarized continuum has the spectral index similar to or no bluer than that of quasars, which favors electrons as the dominant scattering particles. The large scattering region size, however, favors dust scattering, because of its higher scattering efficiency compared to electrons. In this paper, we investigate the polarized flux spectrum over a wide wavelength range, combining our UV data with previous optical/infrared polarimetry data. We infer that the scattering would be often caused by opaque dust clouds in the NLRGs and this would be a part of the reason for the apparently grey scattering. In the high-redshift radio galaxies, these opaque clouds could be the proto-galactic subunits inferred to be seen in the HST images. However, we still cannot rule out the possibility of electron scattering, which could imply the existence of a large gas mass surrounding these radio galaxies.Comment: 25 pages, 21 figures. To appear in Ap

    Indication of Anisotropy in Electromagnetic Propagation over Cosmological Distances

    Full text link
    We report a systematic rotation of the plane of polarization of electromagnetic radiation propagating over cosmological distances. The effect is extracted independently from Faraday rotation, and found to be correlated with the angular positions and distances to the sources. Monte Carlo analysis yields probabilistic P-values of order 10^(-3) for this to occur as a fluctuation. A fit yields a birefringence scale of order 10^(25) meters. Dependence on redshift z rules out a local effect. Barring hidden systematic bias in the data, the correlation indicates a new cosmological effect.Comment: 5 pages, 1 figure, ReVTeX. For more information, see http://www.cc.rochester.edu/college/rtc/Borge/aniso.htm

    HST and UKIRT imaging observations of z~1 6C radio galaxies - II. Galaxy morphologies and the alignment effect

    Get PDF
    (abridged) Powerful radio galaxies often display enhanced optical/UV emission regions, elongated and aligned with the radio jet axis. The aim of this series of papers is to separately investigate the effects of radio power and redshift on the alignment effect, together with other radio galaxy properties. In this second paper, we present a deeper analysis of the morphological properties of these systems, including both the host galaxies and their surrounding aligned emission. The host galaxies of our 6C subsample are well described as de Vaucouleurs ellipticals, with typical scale sizes of ~10kpc. This is comparable to the host galaxies of low-z radio sources of similar powers, and also the more powerful 3CR sources at the same redshift. The contribution of nuclear point source emission is also comparable, regardless of radio power. The 6C alignment effect is remarkably similar to that seen around more powerful 3CR sources at the same redshift in terms of extent and degree of alignment with the radio source axis, although it is generally less luminous. The bright, knotty features observed in the case of the z~1 3CR sources are far less frequent in our 6C subsample; neither do we observe such strong evidence for evolution in the strength of the alignment effect with radio source size/age. However, we do find a very strong link between the most extreme alignment effects and emission line region properties indicative of shocks, regardless of source size/age or power. In general, the 6C alignment effect is still considerably stronger than that seen around lower redshift galaxies of similar radio powers. (abridged)Comment: 23 pages, 15 figures, accepted for publication in MNRAS. See http://www.mrao.cam.ac.uk/~kji/MorphPaper/ for version of paper with full resolution images of Figs 1-1
    • …
    corecore