1,723 research outputs found

    Probing photospheric magnetic fields with new spectral line pairs

    Full text link
    The magnetic line ratio (MLR) method has been extensively used in the measurement of photospheric magnetic field strength. It was devised for the neutral iron line pair at 5247.1 A and 5250.2 A (5250 A pair). Other line pairs as well-suited as this pair been have not been reported in the literature. The aim of the present work is to identify new line pairs useful for the MLR technique and to test their reliability. We use a three dimensional magnetohydrodynamic (MHD) simulation representing the quiet Sun atmosphere to synthesize the Stokes profiles. Then, we apply the MLR technique to the Stokes V profiles to recover the fields in the MHD cube both, at original resolution and after degrading with a point spread function. In both these cases, we aim to empirically represent the field strengths returned by the MLR method in terms of the field strengths in the MHD cube. We have identified two new line pairs that are very well adapted to be used for MLR measurements. The first pair is in the visible, Fe I 6820 A - 6842 A (whose intensity profiles have earlier been used to measure stellar magnetic fields), and the other is in the infrared (IR), Fe I 15534 A - 15542 A. The lines in these pairs reproduce the magnetic fields in the MHD cube rather well, partially better than the original 5250 A pair. The newly identified line pairs complement the old pairs. The lines in the new IR pair, due to their higher Zeeman sensitivity, are ideal for the measurement of weak fields. The new visible pair works best above 300 G. The new IR pair, due to its large Stokes V signal samples more fields in the MHD cube than the old IR pair at 1.56μ1.56\,\mum, even in the presence of noise, and hence likely also on the real Sun. Owing to their low formation heights (100-200 km above tau_5000=1), both the new line pairs are well suited for probing magnetic fields in the lower photosphere.Comment: Accepted for publication in Astronomy & Astrophysic

    ACRIM-gap and total solar irradiance revisited: Is there a secular trend between 1986 and 1996?

    Full text link
    A gap in the total solar irradiance (TSI) measurements between ACRIM-1 and ACRIM-2 led to the ongoing debate on the presence or not of a secular trend between the minima preceding cycles 22 (in 1986) and 23 (1996). It was recently proposed to use the SATIRE model of solar irradiance variations to bridge this gap. When doing this, it is important to use the appropriate SATIRE-based reconstruction, which we do here, employing a reconstruction based on magnetograms. The accuracy of this model on months to years timescales is significantly higher than that of a model developed for long-term reconstructions used by the ACRIM team for such an analysis. The constructed `mixed' ACRIM - SATIRE composite shows no increase in the TSI from 1986 to 1996, in contrast to the ACRIM TSI composite.Comment: 4 figure

    Solar Irradiance Variability and Climate

    Full text link
    The brightness of the Sun varies on all time scales on which it has been observed, and there is increasing evidence that it has an influence on climate. The amplitudes of such variations depend on the wavelength and possibly on the time scale. Although many aspects of this variability are well established, the exact magnitude of secular variations (going beyond a solar cycle) and the spectral dependence of variations are under discussion. The main drivers of solar variability are thought to be magnetic features at the solar surface. The climate reponse can be, on a global scale, largely accounted for by simple energetic considerations, but understanding the regional climate effects is more difficult. Promising mechanisms for such a driving have been identified, including through the influence of UV irradiance on the stratosphere and dynamical coupling to the surface. Here we provide an overview of the current state of our knowledge, as well as of the main open questions

    Solar cycle variation in solar irradiance

    Full text link
    The correlation between solar irradiance and the 11-year solar activity cycle is evident in the body of measurements made from space, which extend over the past four decades. Models relating variation in solar irradiance to photospheric magnetism have made significant progress in explaining most of the apparent trends in these observations. There are, however, persistent discrepancies between different measurements and models in terms of the absolute radiometry, secular variation and the spectral dependence of the solar cycle variability. We present an overview of solar irradiance measurements and models, and discuss the key challenges in reconciling the divergence between the two

    EMPIRE: A robust empirical reconstruction of solar irradiance variability

    Full text link
    We present a new empirical model of total and spectral solar irradiance (TSI and SSI) variability entitled EMPirical Irradiance REconstruction (EMPIRE). As with existing empirical models, TSI and SSI variability is given by the linear combination of solar activity indices. In empirical models, UV SSI variability is usually determined by fitting the rotational variability in activity indices to that in measurements. Such models have to date relied on ordinary least squares regression, which ignores the uncertainty in the activity indices. In an advance from earlier efforts, the uncertainty in the activity indices is accounted for in EMPIRE by the application of an error-in-variables regression scheme, making the resultant UV SSI variability more robust. The result is consistent with observations and unprecedentedly, with that from other modelling approaches, resolving the long-standing controversy between existing empirical models and other types of models. We demonstrate that earlier empirical models, by neglecting the uncertainty in activity indices, underestimate UV SSI variability. The reconstruction of TSI and visible and IR SSI from EMPIRE is also shown to be consistent with observations. The EMPIRE reconstruction is of utility to climate studies as a more robust alternative to earlier empirical reconstructions.Comment: J. Geophys. Res. (2017

    Reconstruction of solar UV irradiance since 1974

    Full text link
    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the SATIRE models employing SUSIM data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the MDI instrument on SoHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-alpha irradiance agrees well with the composite time series by Woods et al (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-alpha and oxygen absorption continuum and bands between 130 and 350 nm) is one to two orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance)
    corecore