83 research outputs found

    Environmental fate and exposure; neonicotinoids and fipronil

    Get PDF
    Systemic insecticides are applied to plants using a wide variety of methods, ranging from foliar sprays to seed treatments and soil drenches. Neonicotinoids and fipronil are among the most widely used pesticides in the world. Their popularity is largely due to their high toxicity to invertebrates, the ease and flexibility with which they can be applied, their long persistence, and their systemic nature, which ensures that they spread to all parts of the target crop. However, these properties also increase the probability of environmental contamination and exposure of nontarget organisms. Environmental contamination occurs via a number of routes including dust generated during drilling of dressed seeds, contamination and accumulation in arable soils and soil water, runoff into waterways, and uptake of pesticides by nontarget plants via their roots or dust deposition on leaves. Persistence in soils, waterways, and nontarget plants is variable but can be prolonged; for example, the half-lives of neonicotinoids in soils can exceed 1,000 days, so they can accumulate when used repeatedly. Similarly, they can persist inwoody plants for periods exceeding 1 year. Breakdown results in toxic metabolites, though concentrations of these in the environment are rarely measured. Overall, there is strong evidence that soils, waterways, and plants in agricultural environments and neighboring areas are contaminated with variable levels of neonicotinoids or fipronil mixtures and their metabolites (soil, parts per billion (ppb)-parts per million (ppm) range; water, parts per trillion (ppt)-ppb range; and plants, ppb-ppm range). This provides multiple routes for chronic (and acute in some cases) exposure of nontarget animals. For example, pollinators are exposed through direct contact with dust during drilling; consumption of pollen, nectar, or guttation drops from seed-treated crops, water, and consumption of contaminated pollen and nectar from wild flowers and trees growing near-treated crops. Studies of food stores in honeybee colonies from across the globe demonstrate that colonies are routinely and chronically exposed to neonicotinoids, fipronil, and their metabolites (generally in the 1-100 ppb range), mixed with other pesticides some of which are known to act synergistically with neonicotinoids. Other nontarget organisms, particularly those inhabiting soils, aquatic habitats, or herbivorous insects feeding on noncrop plants in farmland, will also inevitably receive exposure, although data are generally lacking for these groups. We summarize the current state of knowledge regarding the environmental fate of these compounds by outlining what is known about the chemical properties of these compounds, and placing these properties in the context of modern agricultural practices

    Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle

    Get PDF
    Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time

    Bringing Back a Healthy Buzz? Invertebrate Parasites and Reintroductions:A Case Study in Bumblebees

    Get PDF
    Reintroductions can play a key role in the conservation of endangered species. Parasites may impact reintroductions, both positively and negatively, but few case studies of how to manage parasites during reintroductions exist. Bumblebees are in decline at regional and global scales, and reintroductions can be used to re-establish extinct local populations. Here we report on how the risks associated with parasites are being managed in an ongoing reintroduction of the short-haired bumblebee, Bombus subterraneus, to the UK. Disease risk analysis was conducted and disease risk management plans constructed to design a capture-quarantine-release system that minimised the impacts on both the bumblebees and on their natural parasites. Given that bumblebee parasites are (i) generalists, (ii) geographically ubiquitous, and (iii) show evidence of local adaptation, the disease risk management plan was designed to limit the co-introduction of parasites from the source population in Sweden to the destination site in the UK. Results suggest that this process at best eliminated, or at least severely curtailed the co-introduction of parasites, and ongoing updates of the plan enabled minimization of impacts on natural host-parasite dynamics in the Swedish source population. This study suggests that methods designed for reintroductions of vertebrate species can be successfully applied to invertebrates. Future reintroductions of invertebrates where the parasite fauna is less well known should take advantage of next-generation barcoding and multiple survey years prior to the start of reintroductions, to develop comprehensive disease risk management plans
    • …
    corecore