28 research outputs found

    Renal amyloidosis in children

    Get PDF
    Renal amyloidosis is a detrimental disease caused by the deposition of amyloid fibrils. A child with renal amyloidosis may present with proteinuria or nephrotic syndrome. Chronic renal failure may follow. Amyloid fibrils may deposit in other organs as well. The diagnosis is through the typical appearance on histopathology. Although chronic infections and chronic inflammatory diseases used to be the causes of secondary amyloidosis in children, the most frequent cause is now autoinflammatory diseases. Among this group of diseases, the most frequent one throughout the world is familial Mediterranean fever (FMF). FMF is typically characterized by attacks of clinical inflammation in the form of fever and serositis and high acute-phase reactants. Persisting inflammation in inadequately treated disease is associated with the development of secondary amyloidosis. The main treatment is colchicine. A number of other monogenic autoinflammatory diseases have also been identified. Among them cryopyrin-associated periodic syndrome (CAPS) is outstanding with its clinical features and the predilection to develop secondary amyloidosis in untreated cases. The treatment of secondary amyloidosis mainly depends on the treatment of the disease. However, a number of new treatments for amyloid per se are in the pipeline

    Continuous nisin production with bioengineered Lactococcus lactis strains.

    No full text
    Nisin production in continuous cultures of bioengineered Lactococcus lactis strains that incorporate additional immunity and regulation genes was studied. Highest nisin activities were observed at 0.2 h(-1) dilution rate and 12.5 g l(-1) fructose concentration for all strains. Recombinant strains were able to produce greater amounts of nisin at dilution rates below 0.3 h(-1) compared to the control strain. However, this significant difference disappeared at dilution rates of 0.4 and 0.5 h(-1). For the strains LL27, LAC338, LAC339, and LAC340, optimum conditions for nisin production were determined to be at 0.29, 0.26, 0.27, and 0.27 h(-1) dilution rates and 11.95, 12.01, 11.63, and 12.50 g l(-1) fructose concentrations, respectively. The highest nisin productivity, 496 IU ml(-1) h(-1), was achieved with LAC339. The results of this study suggest that low dilution rates stabilize the high specific nisin productivity of the bioengineered strains in continuous fermentation. Moreover, response surface methodology analysis showed that regulation genes yielded high nisin productivity at wide ranges of dilution rates and fructose concentrations

    Immobilization of nisin producer Lactococcus lactis strains to chitin with surface-displayed chitin-binding domain.

    No full text
    In this study, nisin producer Lactococcus lactis strains displaying cell surface chitin-binding domain (ChBD) and capable of immobilizing to chitin flakes were constructed. To obtain ChBD-based cell immobilization, Usp45 signal sequence with ChBD of chitinase A1 enzyme from Bacillus circulans was fused with different lengths of PrtP (153, 344, and 800 aa) or AcmA (242 aa) anchors derived from L. lactis. According to the whole cell ELISA analysis, ChBD was successfully expressed on the surface of L. lactis cells. Scanning electron microscope observations supported the conclusion of the binding analysis that L. lactis cells expressing the ChBD with long PrtP anchor (800 aa) did bind to chitin surfaces more efficiently than cells with the other ChBD anchors. The attained binding affinity of nisin producers for chitin flakes retained them in the fermentation during medium changes and enabled storage for sequential productions. Initial nisin production was stably maintained with many cycles. These results demonstrate that an efficient immobilization of L. lactis cells to chitin is possible for industrial scale repeated cycle or continuous nisin fermentation

    Consanguineous marriages in Denizli, Turkey.

    No full text
    For the study 1000 families were interviewed during 1996 in the city of Denizli, which is situated in Western Anatolia and has a population of 79211 families. The overall rate of consanguinity was 11.7%, with a mean inbreeding coefficient of 0.00873. The principal type of consanguineous marriage recorded was between first cousins, which accounted for 49.6% of all unions. For both sexes, a significant negative association was observed between consanguinity and mean age at marriage and level of education
    corecore