130 research outputs found

    Approximations of singular vertex couplings in quantum graphs

    Full text link
    We discuss approximations of the vertex coupling on a star-shaped quantum graph of nn edges in the singular case when the wave functions are not continuous at the vertex and no edge-permutation symmetry is present. It is shown that the Cheon-Shigehara technique using δ\delta interactions with nonlinearly scaled couplings yields a 2n2n-parameter family of boundary conditions in the sense of norm resolvent topology. Moreover, using graphs with additional edges one can approximate the (n+12){n+1\choose 2}-parameter family of all time-reversal invariant couplings.Comment: LaTeX source file, 33 pages, with 3 eps figure

    Scale Anomaly and Quantum Chaos in the Billiards with Pointlike Scatterers

    Full text link
    We argue that the random-matrix like energy spectra found in pseudointegrable billiards with pointlike scatterers are related to the quantum violation of scale invariance of classical analogue system. It is shown that the behavior of the running coupling constant explains the key characteristics of the level statistics of pseudointegrable billiards.Comment: 10 pages, RevTex file, uuencode

    Fermion-Boson Duality of One-dimensional Quantum Particles with Generalized Contact Interaction

    Full text link
    For a system of spinless one-dimensional fermions, the non-vanishing short-range limit of two-body interaction is shown to induce the wave-function discontinuity. We prove the equivalence of this fermionic system and the bosonic particle system with two-body δ\delta-function interaction with the reversed role of strong and weak couplings. KEYWORDS: one-dimensional system, ϵ\epsilon-interaction, solvable many-body problem, exact bosonizationComment: 4 pages ReVTeX 4 epsf figures included, new Ref

    Equivalence of Local and Separable Realizations of the Discontinuity-Inducing Contact Interaction and Its Perturbative Renormalizability

    Full text link
    We prove that the separable and local approximations of the discontinuity-inducing zero-range interaction in one-dimensional quantum mechanics are equivalent. We further show that the interaction allows the perturbative treatment through the coupling renormalization. Keywords: one-dimensional system, generalized contact interaction, renormalization, perturbative expansion. PACS Nos: 3.65.-w, 11.10.Gh, 31.15.MdComment: ReVTeX 7pgs, doubl column, no figure, See also the website http://www.mech.kochi-tech.ac.jp/cheon

    Nuclear Mass Dependence of Chaotic Dynamics in Ginocchio Model

    Full text link
    The chaotic dynamics in nuclear collective motion is studied in the framework of a schematic shell model which has only monopole and quadrupole degrees of freedom. The model is shown to reproduce the experimentally observed global trend toward less chaotic motion in heavier nuclei. The relation between current approach and the earlier studies with bosonic models is discussed.Comment: 11 Page REVTeX file, 2 postscript figures, uuencode

    Level spacing distribution of pseudointegrable billiard

    Full text link
    In this paper, we examine the level spacing distribution P(S)P(S) of the rectangular billiard with a single point-like scatterer, which is known as pseudointegrable. It is shown that the observed P(S)P(S) is a new type, which is quite different from the previous conclusion. Even in the strong coupling limit, the Poisson-like behavior rather than Wigner-like is seen for S>1S>1, although the level repulsion still remains in the small SS region. The difference from the previous works is analyzed in detail.Comment: 11 pages, REVTeX file, 3 PostScript Figure

    Elementary derivation of Spitzer's asymptotic law for Brownian windings and some of its physical applications

    Full text link
    A simple derivation of Spitzer'z asymptotic law for Brownian windings [Trans.Am.Math.Soc.87,187 (1958)]is presented along with its generalizations >.These include the cases of planar Brownian walks interacting with a single puncture and Brownian walks on a single truncated cone with variable conical angle interacting with the truncated conical tip.Such situations are typical in the theories of quantum Hall effect and 2+1 quantum gravity, respectively .They also have some applications in polymer physic

    Distorted wave impulse approximation analysis for spin observables in nucleon quasi-elastic scattering and enhancement of the spin-longitudinal response

    Full text link
    We present a formalism of distorted wave impulse approximation (DWIA) for analyzing spin observables in nucleon inelastic and charge exchange reactions leading to the continuum. It utilizes response functions calculated by the continuum random phase approximation (RPA), which include the effective mass, the spreading widths and the \Delta degrees of freedom. The Fermi motion is treated by the optimal factorization, and the non-locality of the nucleon-nucleon t-matrix by an averaged reaction plane approximation. By using the formalism we calculated the spin-longitudinal and the spin-transverse cross sections, ID_q and ID_p, of 12C, 40Ca (\vec{p},\vec{n}) at 494 and 346 MeV. The calculation reasonably reproduced the observed ID_q, which is consistent with the predicted enhancement of the spin-longitudinal response function R_L. However, the observed ID_p is much larger than the calculated one, which was consistent with neither the predicted quenching nor the spin-transverse response function R_T obtained by the (e,e') scattering. The Landau-Migdal parameter g'_N\Delta for the N\Delta transition interaction and the effective mass at the nuclear center m^*(r=0) are treated as adjustable parameters. The present analysis indicates that the smaller g'_{N\Delta}(\approx 0.3) and m^*(0) \approx 0.7 m are preferable. We also investigate the validity of the plane wave impulse approximation (PWIA) with the effective nucleon number approximation for the absorption, by means of which R_L and R_T have conventionally been extracted.Comment: RevTex 3, 29 pages, 2 tables, 8 figure

    Analysis of exchange terms in a projected ERPA Theory applied to the quasi-elastic (e,e') reaction

    Get PDF
    A systematic study of the influence of exchange terms in the longitudinal and transverse nuclear response to quasi-elastic (e,e') reactions is presented. The study is performed within the framework of the extended random phase approximation (ERPA), which in conjuction with a projection method permits a separation of various contributions tied to different physical processes. The calculations are performed in nuclear matter up to second order in the residual interaction for which we take a (pi+rho)-model with the addition of the Landau-Migdal g'-parameter. Exchange terms are found to be important only for the RPA-type contributions around the quasielastic peak.Comment: 29 pages, 6 figs (3 in postscript, 3 faxed on request), epsf.st
    corecore