6 research outputs found

    Long-term wear failure analysis of UHMWPE acetabular cup in total hip replacement

    No full text
    A revision of a metal-on-ultra high molecular weight (UHMWPE) bearing couple for total hip replacement was performed due to aseptic loosening after 23 years in-vivo. It is a major long-term failure identified from wear generation. This study includes performing failure analysis of retrieved polyethylene acetabular cup from Zimmer Trilogy ® Acetabular system. The UHMWPE acetabular cup was retrieved from a 61 years old male patient with ability to walk but limited leg movement when he presented to hospital in early 2016 with complaint left thigh pain. It was 23 years after his primary total hip replacement procedure. Surface roughness and morphology condition were measured using 3D laser microscope and Scanning Electron Microscope (SEM) to evaluate and characterize the wear features on polyethylene acetabular cup surface. ATR-Fourier Transform Infra-Red (ATR-FTIR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) were used to characterize the chemical composition of carbon-oxygen bonding, crystallinity percentage and molecular weight of the polymer liner that might changes the mechanical properties of polyethylene. Nano indentation is to measure hardness and elasticity modulus where the ratio of hardness to elastic modulus value can be reflected as the degradation of mechanical properties. A prominent difference of thickness between two regions resulted from acentric loading concentration was observed and wear rate were measured. The linear wear rate for thin side and thick side were 0.33 mm/year and 0.05 mm/year respectively. Molecular weight reduction of 57.5% and relatively low ratio of hardness to elastic modulus (3.59 × 10 −3 ) were the indicator of major mechanical properties degradation happened on UHMWPE acetabular cup. This major degradation was contributed by oxidation and polishing wear feature accompanied with delamination, craters, ripple and cracks were the indication of extensive usage of UHMWPE from the suggested life span of acetabular cup application

    The relations between wear behavior and basic material properties of graphene-based materials reinforced ultrahigh molecular weight polyethylene

    Get PDF
    This article aims to investigate the influence of reinforcing graphene oxide (GO) and graphite flakes (GF) fillers into ultrahigh molecular weight polyethylene (UHMWPE) for orthopedic application. These fillers were expected to physically bond to UHMWPE, thus can enhance the subsurface strength, improving the wear behavior of the composites. UHMWPE/GO and UHMWPE/GF composites were prepared at 0.1 and 1.0 wt% by melt-blending, followed by a compression molding technique. A multidirectional pin-on-disc wear test was performed to simulate the kinematic of hip application. Whilst getting exposed in the artificial in-vivo lubricant bath (30 v/v% diluted bovine serum). Following this, the wear mechanism fostered by each filler (GO and GF) was determined by wear features obtained from the optical microscope and scanning electron microscope (SEM). The crystallinity degree and crystal defect were assessed using x-ray diffraction (XRD). The mechanical properties of fabricated composites were evaluated by using a universal testing machine and Vickers microhardness. We found that UHMWPE/GO has the lowest specific wear rate due to the improved subsurface strength, as the reduction of a weak adhesive point was observed on the worn surface. Meanwhile, higher GF content (1 wt%) in UHMWPE displayed a lower specific wear rate than neat UHMWPE after completing the 10 km sliding distance attributed to the filler resurfaced, responsible for providing a strong resistance of the shear stress applied upon sliding with the metal counterface. Interestingly, the hardness and tensile strength for both UHMWPE/GO and UHMWPE/GF increased, although the crystallinity percentage was declining compared to neat UHMWPE

    Surface analysis of retrieved bilateral UHMWPE tibial inserts under varus malalignment condition

    No full text
    Failure analysis on a retrieved ultra-high molecular weight (UHMWPE) knee tibial inserts of bilateral total knee replacement (TKR) was performed due to aseptic loosening detected after 16 years (left) and 12 years (right) in vivo services. Despite long implantation time, the effect of varus malalignment present on a 71 years old female patient (body mass index, 35.1) with a non-active lifestyle will be considered as a factor towards the TKR failure. We, therefore, determined whether implant malalignment was associated with increased surface damages in both retrieved tibial inserts. Surface damage morphology was assessed using a 3D laser microscope and Scanning Electron Microscope (SEM). ATR-Fourier Transform Infra-Red (ATR-FTIR), Differential Scanning Calorimetry (DSC) and Gel-Permeation Chromatography (GPC) were used to measure changes of chemical and physical properties of retrieved inserts. Results show left-16 years insert possesses more severe wear degradation (crater and cracks) compare to wear on right-12 years insert (delamination, multidirectional scratches, and ripple). The surface roughness on the medial compartment seems to be higher than the lateral side for both inserts which can be affected by uneven load distribution contribute by the varus deformity. Higher crystallinity of left-16 years insert (66.99%) compare to right-12 years insert (56.52%) were an indicator of major mechanical changes happen on left insert which was contributed by oxidation with respect to implantation time of both inserts. Our findings revealed that in vivo oxidation is a main contributing factor to the failure of implants, but not varus malalignment. The material properties in the oxidized layer are significantly altered, including a very substantial reduction in molecular weight displayed by both inserts

    A review of the bio-tribology of medical devices

    No full text
    corecore