287 research outputs found
Topological Reverberations in Flat Space-times
We study the role played by multiply-connectedness in the time evolution of
the energy E(t) of a radiating system that lies in static flat space-time
manifolds M_4 whose t=const spacelike sections M_3 are compact in at least one
spatial direction. The radiation reaction equation of the radiating source is
derived for the case where M_3 has any non-trivial flat topology, and an exact
solution is obtained. We also show that when the spacelike sections are
multiply-connected flat 3-manifolds the energy E(t) exhibits a reverberation
pattern with discontinuities in the derivative of E(t) and a set of relative
minima and maxima, followed by a growth of E(t). It emerges from this result
that the compactness in at least one spatial direction of Minkowski space-time
is sufficient to induce this type of topological reverberation, making clear
that our radiating system is topologically fragile. An explicit solution of the
radiation reaction equation for the case where M_3 = R^2 x S^1 is discussed,
and graphs which reveal how the energy varies with the time are presented and
analyzed.Comment: 16 pages, 4 figures, REVTEX; Added five references and inserted
clarifying details. Version to appear in Int. J. Mod. Phys. A (2000
Magnetic resonance-guided focused ultrasound treatment for essential tremor shows sustained efficacy: a meta-analysis
Although magnetic resonance-guided focused ultrasound (MRgFUS) is a viable treatment option for essential tremor, some studies note a diminished treatment benefit over time. A PubMed search was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were included if hand tremor scores (HTS), total Clinical Rating Scale for Tremor (CRST) scores, or Quality of Life in Essential Tremor Questionnaire (QUEST) scores at regular intervals following MRgFUS treatment for essential tremor were documented. Data analyses included a random effects model of meta-analysis and mixed-effects model of meta-regression. Twenty-one articles reporting HTS for 395 patients were included. Mean pre-operative HTS was 19.2 ± 5.0. Mean HTS at 3 months post-treatment was 7.4 ± 5.0 (61.5% improvement, p \u3c 0.001). Treatment effect was mildly decreased at 36 months at 9.1 ± 5.4 (8.8% reduction). Meta-regression of time since treatment as a modifier of HTS revealed a downward trend in effect size, though this was not statistically significant (p = 0.208). Only 4 studies included follow-up ≥ 24 months. Thirteen included articles reported total CRST scores with standardized follow-up for 250 patients. Mean pre-operative total CRST score decreased by 46.2% at 3 months post-treatment (p \u3c 0.001). Additionally, mean QUEST scores at 3 months post-treatment significantly improved compared to baseline (p \u3c 0.001). HTS is significantly improved from baseline ≥ 24 months post-treatment and possibly ≥ 48 months post-treatment. There is a current paucity of long-term CRST and QUEST score reporting in the literature
Diatom metabarcoding and microscopic analyses from sediment samples at Lake Nam Co, Tibet: The effect of sample-size and bioinformatics on the identified communities
Diatoms (Bacillariophyceae) are characterized by silicified cell walls that favor their long-term preservation in sediments, therefore widely used as bioindicators of present and past water conditions. Alongside with traditional morphological analyses, metabarcoding has become a valuable tool to study the community structures of various organisms, including diatoms. Here, we test whether the quantity of sediment sample used for DNA extraction affects the results obtained from high-throughput sequencing (metabarcoding) of the diatom rbcL region by isolating DNA from 10 g and 0.5 g (wet weight) of lake surface sediment samples. Because bioinformatics processing of metabarcoding data may affect the outcome, we also tested the consistency of the results from three different pipelines: 1) ESVs (exact sequence variants) pipeline; 2) clustering sequences at 95% sequence identity to form OTUs (operational taxonomic units; 95% OTUs); and 3) 97% OTUs pipeline. Additionally, the agreement between metabarcoding data and morphological inventories of corresponding samples were compared. Our results demonstrate highly uniform patterns between the diatom rbcL amplicons from 10 g and 0.5 g of sedimentary DNA (sedDNA) extracts (HTS 10 and HTS 0.5, respectively). Furthermore, after the careful curation of the sequencing data, metabarcoding results were highly consistent among the data sets produced by different bioinformatics pipelines. Comparing results from metabarcoding and microscopy, we identified some taxonomic mismatches: morphological analyses identified 59 diatom genera, whereas metabarcoding 49 to 54 genera. These mismatches are related to incompleteness of the sequence databases, but also to inconsistencies in diatom taxonomy in general and potential dissolution effects of diatom valves caused by high alkalinity of the investigated lake waters. Nevertheless, multivariate community analysis revealed consistent results between data sets identified by microscopy and metabarcoding – water depth and conductivity as the most significant variables in driving diatom communities in Lake Nam Co – further confirming that metabarcoding is a viable method for identifying diatom-environment relationships
A paper based graphene-nanocauliflower hybrid composite for point of care biosensing
Graphene paper has diverse applications in printed circuit board electronics, bioassays, 3D cell culture, and biosensing. Although development of nanometal-graphene hybrid composites is commonplace in the sensing literature, to date there are only a few examples of nanometal-decorated graphene paper for use in biosensing. In this manuscript, we demonstrate the synthesis and application of Pt nano cauliflower-functionalized graphene paper for use in electrochemical biosensing of small molecules (glucose, acetone, methanol) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy were used to show that graphene oxide deposited on nanocellulose crystals was partially reduced by both thermal and chemical treatment. Fractal platinum nanostructures were formed on the reduced graphene oxide paper, producing a conductive paper with an extremely high electroactive surface area, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. To show the broad applicability of the material, the platinum surface was functionalized with three different biomaterials: 1) glucose oxidase (via chitosan encapsulation); 2) a DNA aptamer (via covalent linking), or 3) a chemosensory protein (via his linking). We demonstrate the application of this device for point of care biosensing. The detection limit for both glucose (0.08 ± 0.02 μM) and E. coli O157:H7 (1.3 ± 0.1 CFU mL-1) were competitive with, or superior to, previously reported devices in the biosensing literature. The response time (6 sec for glucose and 10 min for E. coli) were also similar to silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting small molecules or whole cells for use in point of care biosensing
Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV
Chemical and thermal freeze-out of the hadronic fireball formed in symmetric
collisions of light, intermediate-mass, and heavy nuclei at beam energies
between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated,
isospin-symmetric ideal hadron gas with grand-canonical baryon-number
conservation. For each collision system the baryochemical potential mu_B and
the chemical freeze-out temperature T_c are deduced from the inclusive neutral
pion and eta yields which are augmented by interpolated data on deuteron
production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV,
while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with
system size, whereas T_c remains constant. The centrality dependence of the
freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV.
For the highest beam energies the fraction of nucleons excited to resonance
states reaches freeze-out values of nearly 15 %, suggesting resonance densities
close to normal nuclear density at maximum compression. In contrast to the
particle yields, which convey the status at chemical freeze-out, the shapes of
the related transverse-mass spectra do reflect thermal freeze-out. The observed
thermal freeze-out temperatures T_th are equal to or slightly lower than T_c,
indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
Reducing Superfluous Opioid Prescribing Practices After Brain Surgery: It Is Time to Talk About Drugs
BACKGROUND: Opioids are prescribed routinely after cranial surgery despite a paucity of evidence regarding the optimal quantity needed. Overprescribing may adversely contribute to opioid abuse, chronic use, and diversion.
OBJECTIVE: To evaluate the effectiveness of a system-wide campaign to reduce opioid prescribing excess while maintaining adequate analgesia.
METHODS: A retrospective cohort study of patients undergoing a craniotomy for tumor resection with home disposition before and after a 2-mo educational intervention was completed. The educational initiative was composed of directed didactic seminars targeting senior staff, residents, and advanced practice providers. Opioid prescribing patterns were then assessed for patients discharged before and after the intervention period.
RESULTS: A total of 203 patients were discharged home following a craniotomy for tumor resection during the study period: 98 who underwent surgery prior to the educational interventions compared to 105 patients treated post-intervention. Following a 2-mo educational period, the quantity of opioids prescribed decreased by 52% (median morphine milligram equivalent per day [interquartile range], 32.1 [16.1, 64.3] vs 15.4 [0, 32.9], P \u3c .001). Refill requests also decreased by 56% (17% vs 8%, P = .027) despite both groups having similar baseline characteristics. There was no increase in pain scores at outpatient follow-up (1.23 vs 0.85, P = .105).
CONCLUSION: A dramatic reduction in opioids prescribed was achieved without affecting refill requests, patient satisfaction, or perceived analgesia. The use of targeted didactic education to safely improve opioid prescribing following intracranial surgery uniquely highlights the ability of simple, evidence-based interventions to impact clinical decision making, lessen potential patient harm, and address national public health concerns
Mitochondrial sequence data reveal population structure within Pustulosa pustulosa
Unionid mussels are among the most imperiled group of organisms in North America, and Pustulosa pustulosa is a freshwater species with a relatively wide latitudinal distribution that extends from southern Ontario, Canada, to Texas, USA. Considerable morphological and geographic variation in the genus Pustulosa (formerly Cyclonaias) has led to uncertainty over species boundaries, and recent studies have suggested revisions to species-level classifications by synonymizing C. aurea, C. houstonensis, C. mortoni, and C. refulgens with C. pustulosa (currently P. pustulosa). Owing to its wide range and shallow phylogenetic differentiation, we analyzed individuals of P. pustulosa using mitochondrial DNA sequence data under a population genetics framework. We included 496 individuals, which were comprised of 166 samples collected during this study and 330 additional sequences retrieved from GenBank. Pairwise ΦST measures based on ND1 data suggested there may be up to five major geographic groups present within P. pustulosa. Genetic differentiation between regions within Texas was higher compared to populations from the Mississippi and Great Lakes populations, which may reflect differences in historical connectivity. Mitochondrial sequence data also revealed varying demographic histories for each major group suggesting each geographic region has also experienced differential population dynamics in the past. Future surveys should consider exploring variation within species after phylogeographic delimitation has been performed. In this study, we begin to address this need for freshwater mussels via the P. pustulosa system
Is there a common threshold to subfossil chironomid assemblages at 16 m water depth? Evidence from the Tibetan Plateau
Fluctuating lake levels are an important driver of ecosystem change and changes in the precipitation/evaporation balance of a region can lead to undesirable changes in ecosystem functioning. Large-scale changes in hydrology will become increasingly more likely as a result of ongoing climate change in the coming century. This is especially true for the Tibetan Plateau, which plays a crucial role as the “Asian water tower” for the surrounding densely populated regions. Chironomids (Diptera: Chironomidae) have proven to be one of the most valuable bioindicators for monitoring and reconstructing the development of aquatic ecosystems. Besides temperature, water depth and salinity are two of the most important environmental factors affecting chironomids.
To study the relationship between chironomids and water depth, we analyzed surface sediment samples of two large Tibetan lakes, Selin Co and Taro Co. These lakes have similar environmental conditions (e.g. elevation, temperature and oxygenation) but show strong differences in salinity (7–10 and 0.5 ppt, respectively). Our results show that the chironomid assemblages in both lakes have similar water depths at which the fauna abruptly changes in composition, despite different faunal assemblages. The most important boundaries were identified at 0.8 and 16 m water depth. While the uppermost meter, the “splash zone”, is characterized by distinctly different conditions, resulting from waves and changing water levels, the cause of the lower zone boundary remains enigmatic. Even though none of the measured water depth-related factors, such as water temperature, oxygen content, sediment properties, light intensity or macrophyte vegetation show a distinct change at 16 m water depth, comparison to other records show that a similar change in the chironomid fauna occurs at 16 m water depth in large, deep lakes around the world. We propose that this boundary might be connected to water pressure influencing the living conditions of the larvae or the absolute distance to the surface that has to be covered for the chironomid larvae to hatch.
We conclude that water depth either directly or indirectly exerts a strong control on the chironomid assemblages even under different salinities, resulting in distribution patterns that can be used to reconstruct past fluctuations in water depths
- …