51 research outputs found

    Autocrine Transforming Growth Factor β Signaling Regulates Extracellular Signal-regulated Kinase 1/2 Phosphorylation via Modulation of Protein Phosphatase 2A Expression in Scleroderma Fibroblasts

    Get PDF
    BACKGROUND. During scleroderma (SSc) pathogenesis, fibroblasts acquire an activated phenotype characterized by enhanced production of extracellular matrix (ECM) and constitutive activation of several major signaling pathways including extracellular signal-related kinase (ERK1/2). Several studies have addressed the role of ERK1/2 in SSc fibrosis however the mechanism of its prolonged activation in SSc fibroblasts is still unknown. Protein phosphatase 2A (PP2A) is a key serine threonine phosphatase responsible for dephosphorylation of a wide array of signaling molecules. Recently published microarray data from cultured SSc fibroblasts suggests that the catalytic subunit (C-subunit) of PP2A is downregulated in SSc. In this study we examined the role and regulation of PP2A in SSc fibroblasts in the context of ERK1/2 phosphorylation and matrix production. RESULTS. We show for the first time that PP2A mRNA and protein expression are significantly reduced in SSc fibroblasts and correlate with an increase in ERK1/2 phosphorylation and collagen expression. Furthermore, transforming growth factor β (TGFβ), a major profibrotic cytokine implicated in SSc fibrosis, downregulates PP2A expression in healthy fibroblasts. PP2A-specific small interfering RNA (siRNA) was utilized to confirm the role of PP2A in ERK1/2 dephosphorylation in dermal fibroblasts. Accordingly, blockade of autocrine TGFβ signaling in SSc fibroblasts using soluble recombinant TGFβ receptor II (SRII) restored PP2A levels and decreased ERK1/2 phosphorylation and collagen expression. In addition, we observed that inhibition of ERK1/2 in SSc fibroblasts increased PP2A expression suggesting that ERK1/2 phosphorylation also contributes to maintaining low levels of PP2A, leading to an even further amplification of ERK1/2 phosphorylation. CONCLUSIONS. Taken together, these studies suggest that decreased PP2A levels in SSc is a result of constitutively activated autocrine TGFβ signaling and could contribute to enhanced phosphorylation of ERK1/2 and matrix production in SSc fibroblasts.National Institutes of Health (AR-44883

    Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds

    Get PDF
    Commercialization ofBrassica napus.L (oilseed rape) meal as protein diet is gaining moreattention due to its well-balanced amino acid and protein contents. Phytic acid (PA) is a majorsource of phosphorus in plants but is considered as anti-nutritive for monogastric animalsincluding humans due to its adverse effects on essential mineral absorption. The undigested PAcauses eutrophication, which potentially threatens aquatic life. PA accounts to 2-5% in matureseeds of oilseed rape and is synthesized by complex pathways involving multiple enzymes.Breeding polyploids for recessive traits is challenging as gene functions are encoded by severalparalogs. Gene redundancy often requires to knock out several gene copies to study theirunderlying effects. Therefore, we adopted CRISPR-Cas9 mutagenesis to knock out threefunctional paralogs ofBnITPK. We obtained low PA mutants with an increase of free phosphorusin the canola grade spring cultivar Haydn. These mutants could mark an important milestone inrapeseed breeding with an increase in protein value and no adverse effects on oil contents

    Degradation of the insecticidal toxin produced by Bacillus thuringiensis var. kurstaki by extracellular proteases produced by Chrysosporium sp.

    Get PDF
    Aims:  Some Cry proteins produced by the soil bacterium Bacillus thuringiensis (Bt) or by transgenic Bt plants persist in agricultural soils for an extended period of time, which may pose a hazard for nontarget soil organisms. The aims of our study were to screen for soil fungi capable of degrading the Cry1Ac toxin and to identify the mechanisms that lead to the inactivation of this protein.Methods and Results:  Of the eight fungal strains screened, only one, Chrysosporium sp., was found to produce extracellular proteases capable of degrading the 66-kDa Cry1Ac at the N-terminal end of amino acid 125 (alanine). The proteolytic products of the Cry1Ac toxin did not exhibit any insecticidal activity against Helicoverpa armigera, in contrast to its high toxicity exhibited in the native form.Conclusions:  Proteases elaborated by the Chrysosporium sp. degrade the Cry1Ac toxin in a way that it looses its insecticidal activity against H. armigera.Significance and Impact of the Study: Chrysosporium sp., a specific soil micro-organism capable of producing proteases that degrade the Cry1Ac toxin into inactive products under controlled conditions is being reported for the first time. Application of this observation needs to be further tested in field conditions

    Spectroscopic and biochemical correlations during the course of human lens aging

    Get PDF
    BACKGROUND: With age, the human lens accumulates variety of substances that absorbs and fluorescence, which explains the color of yellow, brunescent and nigrescent cataract in terms of aging. The aim of this study was to assess lens fluorophores with properties comparable to those of advanced glycated end products (AGEs) in relation to age in human lenses. These fluorescent compounds are believed to be involved in the development of cataract. METHODS: Spectroscopic (UV-Vis-NIR) and fluorescence photography (CCD-Digital based image analysis) studies were carried out in randomly selected intact human lenses (2–85 years). AGE-like fluorophores were also measured in water soluble and insoluble (alkali soluble) fractions of human lenses (20–80 years). RESULTS: Our experimental findings suggest that there was a progressive shift in the absorbance characteristic of intact lens in the range of λ(210 nm)-λ(470 nm). A relative increase in the absorptivity at λ((511–520 nm)), with age, was also observed. In addition, the ratio of absorptivity at λ((511–520 nm)) versus the maximum absorbance recorded at blue-end cut-off (210–470 nm) was also found to increase, with age. The fluorescent intensity in the intact lens at both UV-B (λ(Ex312 nm)) and UV-A (λ(Ex365 nm)) were found to be positively correlated (r(2 )= 0.91 & 0.94, respectively; Confidence interval 95%) upto 50 years of age. In addition, a concomitant changes in AGE- like fluorophores were also observed in the processed lens samples (soluble and insoluble fractions) along the age. A significant increase in the concentration of AGE- like fluorophores, both in intact and processed lens was observed during the period of 40 – 50 years. CONCLUSION: Based on the present investigation, it was concluded that significant changes do occur in the AGE-like fluorophores of human lenses during the period of 40–50 years

    Narrow-band imaging versus white light for the detection of proximal colon serrated lesions: a randomized, controlled trial

    Get PDF
    Background The value of narrow-band imaging (NBI) for detecting serrated lesions is unknown. Objective To assess NBI for the detection of proximal colon serrated lesions. Design Randomized, controlled trial. Setting Two academic hospital outpatient units. Patients Eight hundred outpatients 50 years of age and older with intact colons undergoing routine screening, surveillance, or diagnostic examinations. Interventions Randomization to colon inspection in NBI versus white-light colonoscopy. Main Outcome Measurements The number of serrated lesions (sessile serrated polyps plus hyperplastic polyps) proximal to the sigmoid colon. Results The mean inspection times for the whole colon and proximal colon were the same for the NBI and white-light groups. There were 204 proximal colon lesions in the NBI group and 158 in the white light group (P = .085). Detection of conventional adenomas was comparable in the 2 groups. Limitations Lack of blinding, endoscopic estimation of polyp location. Conclusion NBI may increase the detection of proximal colon serrated lesions, but the result in this trial did not reach significance. Additional study of this issue is warranted. (Clinical trial registration number: NCT01572428.

    Chemical Linkage to Injected Tissues Is a Distinctive Property of Oxidized Avidin

    Get PDF
    We recently reported that the oxidized avidin, named AvidinOX®, resides for weeks within injected tissues as a consequence of the formation of Schiff's bases between its aldehyde groups and tissue protein amino groups. We also showed, in a mouse pre-clinical model, the usefulness of AvidinOX for the delivery of radiolabeled biotin to inoperable tumors. Taking into account that AvidinOX is the first oxidized glycoprotein known to chemically link to injected tissues, we tested in the mouse a panel of additional oxidized glycoproteins, with the aim of investigating the phenomenon. We produced oxidized ovalbumin and mannosylated streptavidin which share with avidin glycosylation pattern and tetrameric structure, respectively and found that neither of them linked significantly to cells in vitro nor to injected tissues in vivo, despite the presence of functional aldehyde groups. The study, extended to additional oxidized glycoproteins, showed that the in vivo chemical conjugation is a distinctive property of the oxidized avidin. Relevance of the high cationic charge of avidin into the stable linkage of AvidinOX to tissues is demonstrated as the oxidized acetylated avidin lost the property. Plasmon resonance on matrix proteins and cellular impedance analyses showed in vitro that avidin exhibits a peculiar interaction with proteins and cells that allows the formation of highly stable Schiff's bases, after oxidation

    Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality

    Get PDF
    BackgroundThe plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere.MethodsBacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities’ recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems.ResultsRichness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits.ConclusionWhile the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found

    A study on operative difficulties faced during laparoscopic cholecystectomy, using clinical findings and ultrasound criteria

    No full text
    Background and Objectives: Cholelithiasis is one of the most common biliary pathologies, affecting about 10-15% of the general population.  At present, most of the surgeries are done by laparoscopic procedures, and have replaced open cholecystectomy, Sometimes, laparoscopic cholecystectomy is easy and can be done quickly. In few cases, it will be difficult and various problems can arise during surgery, requiring open cholecystectomy. There is a need to evaluate the clinical factors, lab investigations and ultrasound findings, in predicting the conversion of laparoscopic to open procedure, as open procedure carries more morbidity in view of post-operative pain, prolonged hospital stay, difficulty in breathing, and patients can be made aware of the risks of conversion to open cholecystectomy. Objectives: The objective of study is to predict which clinical findings, lab investigations and preoperative ultrasound findings best correlates with most common operative difficulties faced during laparoscopic cholecystectomy.&nbsp
    • …
    corecore