78 research outputs found

    Unquantized and uncoded channel state information feedback in multiple-antenna multiuser systems

    Full text link

    Retinal degeneration modulates intracellular localization of CDC42 in photoreceptors

    Get PDF
    Purpose: Rho GTPases such as RAS-related C3 botulinum substrate 1 (RAC1) and cell division cycle 42 homolog (S. cerevisiae; CDC42) have been linked to cellular processes including movement, development, and apoptosis. Recently, RAC1 has been shown to be a pro-apoptotic factor in the retina during light-induced photoreceptor degeneration. Here, we analyzed the role of CDC42 in the degenerating retina. Methods: Photoreceptor degeneration was studied in a mouse model for autosomal dominant retinitis pigmentosa (VPP) with or without a rod-specific knockdown of Cdc42, as well as in wild-type and Cdc42 knockdown mice after light exposure. Gene and protein expression were analyzed by real-time PCR, western blotting, and immunofluorescence. Retinal morphology and function were assessed by light microscopy and electroretinography, respectively. Results: CDC42 accumulated in the perinuclear region of terminal deoxynucleotidyl transferase dUTP nick end labeling–negative photoreceptors during retinal degeneration induced by excessive light exposure and in the rd1, rd10, and VPP mouse models of retinitis pigmentosa. The knockdown of Cdc42 did not affect retinal morphology or function in the adult mice and did not influence photoreceptor apoptosis or molecular signaling during induced and inherited retinal degeneration. Conclusions: Retinal degeneration induces the accumulation of CDC42 in the perinuclear region of photoreceptors. In contrast to RAC1, however, lack of CDC42 does not affect the progression of degeneration. CDC42 is also dispensable for normal morphology and function of adult rod photoreceptor cells

    Polynomial time algorithms to determine weakly reversible realizations of chemical reaction networks

    Get PDF
    Weak reversibility is a crucial structural property of chemical reaction networks (CRNs) with mass action kinetics, because it has major implications related to the existence, uniqueness and stability of equilibrium points and to the boundedness of solutions. In this paper, we present two new algorithms to find dynamically equivalent weakly reversible realizations of a given CRN. They are based on linear programming and thus have polynomial time-complexity. Hence, these algorithms can deal with large-scale biochemical reaction networks, too. Furthermore, one of the methods is able to deal with linearly conjugate networks, too. © 2014 Springer International Publishing Switzerland

    Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography

    Get PDF
    BACKGROUND: Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd) generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies

    Early cellular signaling responses to axonal injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury.</p> <p>Results</p> <p>We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3) and apoptosis (Bax).</p> <p>Conclusion</p> <p>We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.</p

    An Extensive Quality Control and Quality Assurance (QC/QA) Program Significantly Improves Inter-Laboratory Concordance Rates of Flow-Cytometric Minimal Residual Disease Assessment in Acute Lymphoblastic Leukemia: An I-BFM-FLOW-Network Report

    Get PDF
    Monitoring of minimal residual disease (MRD) by flow cytometry (FCM) is a powerful prognostic tool for predicting outcomes in acute lymphoblastic leukemia (ALL). To apply FCM-MRD in large, collaborative trials, dedicated laboratory staff must be educated to concordantly high levels of expertise and their performance quality should be continuously monitored. We sought to install a unique and comprehensive training and quality control (QC) program involving a large number of reference laboratories within the international Berlin-Frankfurt-MĂŒnster (I-BFM) consortium, in order to complement the standardization of the methodology with an educational component and persistent quality control measures. Our QC and quality assurance (QA) program is based on four major cornerstones: (i) a twinning maturation program, (ii) obligatory participation in external QA programs (spiked sample send around, United Kingdom National External Quality Assessment Service (UK NEQAS)), (iii) regular participation in list-mode-data (LMD) file ring trials (FCM data file send arounds), and (iv) surveys of independent data derived from trial results. We demonstrate that the training of laboratories using experienced twinning partners, along with continuous educational feedback significantly improves the performance of laboratories in detecting and quantifying MRD in pediatric ALL patients. Overall, our extensive education and quality control program improved inter-laboratory concordance rates of FCM-MRD assessments and ultimately led to a very high conformity of risk estimates in independent patient cohorts

    Dominant Cone-Rod Dystrophy: A Mouse Model Generated by Gene Targeting of the GCAP1/Guca1a Gene

    Get PDF
    Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG), retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions
    • 

    corecore