37 research outputs found

    Oscillations of charged particles in an external magnetic field about steady motion

    No full text
    We develop a Hamiltonian formalism that can be used to study the particle dynamics near stable equilibria. The construction of an original canonical transformation allowed us to prove the conservation of the linear momentum P3, which permitted the expansion of the Hamiltonian about a fixed point. The definition of the rotational variable h whose Poisson algebra properties played the essential role in the diagonalization of the quadratic Hamiltonian yielding two uncoupled oscillators with definite frequencies and amplitudes. It is through applying this variable near a fixed point that come to light Heisenberg's and Harmonic Oscillator equations of motion of the particles, leading thus the association of the fixed point trajectories with arbitrary trajectories in its immediate neighborhood. The present formalism succeeded to treat the problem of free-electron laser dynamics and may be applied to similar cases

    Self-field effects on electron dynamics in a three-dimensional helical wiggler free-electron laser with axial magnetic field

    No full text
    An analytic linear theory of the electron dynamics in a three-dimensional helical wiggler free electron laser (FEL) with axial magnetic field is presented. Orbits are obtained by perturbing the steady state-trajectories in order to determine the characteristic frequencies Ω± of the FEL. The effect of the self-fields on electron dynamics is studied and modified steady-state orbits and their stabilities have been analysed considering variation of electron energy and density. Among the features encountered is that in both group-I and group-II, one of the characteristic frequencies may have either signs affecting then the stability of the motion, while in group-II operation a repulsion of the frequencies at a pseudocrossing leads to highly perturbed trajectories when the wiggler frequency is approximately half the cyclotron frequency. Self-fields effects can significantly impair the stability of the electron orbits. For group-I orbits, they are more important for higher wiggler frequencies and lower beam energies. For group-II orbits, they remain less important for higher wiggler frequencies and lower beam energies before reaching the inversion zone, then they behave as for group-I orbits. It should be remarked that self-fields shift the inversion zone towards higher cyclotron frequencies the thing that is obtained by either decreasing the wiggler frequency or increasing the beam energy. It is shown that the axial velocity-induced self-magnetic field has a diamagnetic effect for both groups orbits, while the wiggler-induced self-magnetic field has a diamagnetic effect for group-I orbits and a paramagnetic effect for group-II orbits. The paramagnetic and diamagnetic effects are more important for higher beam energies and densities

    Structural and vibrational study a new potassium lithium ă dihydrogenphosphate KLi(H2PO4)(2)

    No full text
    International audienceThe single crystal of potassium lithium dihydrogenphosphate ă KLi(H2PO4)(2) (notated as KLDP) was synthesized at room temperature and ă its structure determined by single crystal X-ray diffraction. The ă compound was found to crystallize in the monoclinic system with space ă group P2(1)/c (No.14) and the following parameters a = 7.5197(6), b = ă 12.8943(10) and c = 7.3900(6)angstrom, beta = 98.477(3)degrees, Z = 4. ă This feature structure consists of LiO4 tetrahedra linked by corners ă with H2PO4 groups to form infinite layer running along the ab plane. In ă the interlayer, KO8 polyhedra form layers parallel to the same plane. In ă addition, Raman and infrared spectra were measured at room temperature, ă which confirm the presence of H2PO4, LiO4 groups and ABC bands in the ă unit cell. In fact, these fundamental vibrations were proposed by ă analogy with spectra of other phosphate-based hydrogen-bonded compounds

    Bifidobacterium longum l-Arabinose Isomerase—Overexpression in Lactococcus lactis, Purification, and Characterization

    No full text
    Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (L-AI) was cloned and overexpressed in Lactococcus lactis using a phosphate-depletion-inducible expression system. The purified B. longum L-AI was characterized using D-galactose and L-arabinose as the substrates. The enzyme was active and stable at acidic pH with an optimum at pH 6.0–6.5. The enzyme showed the highest activity at 55 °C during a 20-min incubation at pH 6.5. The Km value was 120 mM for L-arabinose and 590 mM for D-galactose. The V max was 42 U mg−1 with L-arabinose and 7.7 U mg−1 with D-galactose as the substrates. The enzyme had very low requirement for metal ions for catalytic activity, but it was stabilized by divalent metal ions (Mg2+, Mn2+). The enzyme bound the metal ions so tightly that they could not be fully removed from the active site by EDTA treatment. Using purified B. longum L-AI as the catalyst at 35 °C, equilibrium yields of 36 % D-tagatose and 11 % L-ribulose with 1.67 M D-galactose and L-arabinose, respectively, as the substrates were reached

    Virulence factors of Malassezia strains isolated from pityriasis versicolor patients and healthy individuals

    No full text
    Over the last decade, Malassezia species have emerged as increasingly important pathogens associated with a wide range of dermatological disorders and bloodstream infections. The pathogenesis of Malassezia yeasts is not completely clear, but it seems to be strictly related to Malassezia strains and hosts and needs to be better investigated. This study aimed to assess the enzymatic activities, biofilm formation and in vitro antifungal profiles of Malassezia spp. from pityriasis versicolor (PV) and healthy patients. The potential relationship between virulence attributes, the antifungal profiles and the origin of strains was also assessed. A total of 44 Malassezia strains isolated from patients with (n = 31) and without (n = 13) PV were employed to evaluate phospholipase (Pz), lipase (Lz), and hemolytic (Hz) activities and biofilm formation. In addition, in vitro antifungal susceptibility testing was conducted using the CLSI broth microdilution with some modifications. A high percentage of strains produced Pz, Lz, Hz and biofilm regardless of their clinical origin. The highest number of strains producing high enzymatic activities came from PV patients. A correlation between the intensity of hydrolytic activities (Lz and Pz activities) and the Hz activity was detected. Positive associations between Lz and the low fluconazole susceptibility and Hz and biofilm formation were observed. These results suggest that enzyme patterns and biofilm formation along with antifungal profiles inter-play a role in the pathogenicity of Malassezia spp. and might explain the implication of some Malassezia spp. in invasive fungal infections and in the development of inflammation. LAY SUMMARY: There is still little information on the virulence factors of Malassezia spp., despite their implication in severe diseases. Phospholipase, lipase, and hemolytic activities, biofilm formation and decreased antifungal susceptibility seem to contribute to their virulence in susceptible hosts

    d-Tagatose production in the presence of borate by resting Lactococcus lactis cells harboring Bifidobacterium longum l-arabinose isomerase

    No full text
    Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum l-AI were used for production of d-tagatose from d-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of d-galactose to d-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L−1 substrate and at 37.5 °C after 5 days. The d-tagatose production rate of 185 g L−1 day−1 was obtained at 300 g L−1 galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial d-tagatose production rate was 290 g L−1 day−1 under these conditions
    corecore