42 research outputs found

    Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis

    Get PDF
    Background. Previous experimental studies have been conducted to evaluate the biomechanical effects of posterior cruciate ligament reconstruction; but no consensus has been reached on the preferred method of reconstruction. Methods. The 3D finite element mesh of a knee joint was reconstructed from computed tomography and magnetic resonance images. The ligaments were considered as hyperelastic materials. The tibiofemoral and patellofemoral joints were modeled with large sliding contact elements. The 3D model was used to simulate knee flexion from 0 degrees to 90 degrees in four cases: a knee with a "native" posterior cruciate ligament, a resected posterior cruciate ligament, a reconstructed single graft posterior cruciate ligament, and a reconstructed double graft posterior cruciate ligament. Findings. A resected posterior cruciate ligament induced high compressive forces in the medial tibiofemoral and patellofemoral compartments. The pressures generated in the tibiofemoral and patellofemoral compartments were nearly the same for the two reconstruction techniques (single graft and double graft). The single graft resulted in lower tensile stresses inside the graft than for the double graft. Interpretation. Firstly, a resected posterior cruciate ligament should be replaced to avoid excessive compressive forces, which are a source of cartilage degeneration. Secondly, the two types of posterior cruciate ligament reconstruction techniques partially restored the biomechanics of the knee in flexion, e.g. contact pressures were restored for pure flexion of the knee. The reconstruction techniques therefore partially restore the biomechanics of the knee in flexion. A double graft reconstruction is subjected to the highest tensile stresses. (c) 2005 Elsevier Ltd. All rights reserved

    Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™.

    Get PDF
    In a single-center study, 66 healthy volunteers aged between 18 and 50years were randomized to be immunized against rabies with three different injection routes: intradermal with DebioJect™ (IDJ), standard intradermal with classical needle (IDS), also called Mantoux method, and intramuscular with classical needle (IM). "Vaccin rabique Pasteur®" and saline solution (NaCl 0.9%) were administered at D0, D7 and D28. Antigen doses for both intradermal routes were 1/5 of the dose for IM. Tolerability, safety and induced immunogenicity of IDJ were compared to IDS and IM routes. Pain was evaluated at needle insertion and at product injection for all vaccination visits. Solicited Adverse Event (SolAE) and local reactogenicity symptoms including pain, redness and pruritus were recorded daily following each vaccination visit. Adverse events (AE) were recorded over the whole duration of the study. Humoral immune response was measured by assessing the rabies virus neutralizing antibody (VNA) titers using Rapid Fluorescent Focus Inhibition Test (RFFIT). Results demonstrated that the DebioJect™ is a safe, reliable and efficient device. Significant decreases of pain at needle insertion and at vaccine injection were reported with IDJ compared to IDS and IM. All local reactogenicity symptoms (pain, redness and pruritus) after injection with either vaccine or saline solution, were similar for IDJ and IDS, except that IDJ injection induced more redness 30min after saline solution. No systemic SolAE was deemed related to DebioJect™ and classical needles. No AE was deemed related to DebioJect™. No Serious Adverse Event (SAE) was reported during the study. At the end of the study all participants were considered immunized against rabies and no significant difference in humoral response was observed between the 3 studied routes

    The fixation of the cemented femoral component - Effects of stem stiffness, cement thickness and roughness of the cement-bone surface

    Get PDF
    After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. The behaviour of both implants was similar and no substantial differences were found in the size and distribution of micromovement on either interface with respect to the stiffness of the stem. Micromovement was minimal with a cement mantle 3 to 4 mm thick but then increased with greater thickness of the cement. Abnormally high micromovement occurred when the cement was thinner than 2 mm and the stem was made of titanium. The relative decrease in surface roughness augmented slipping but decreased debonding at the cement-bone interface. Shear stress at this site did not vary significantly for the different coefficients of cement-bone friction while compressive and hoop stresses within the cement increased slightly

    Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis

    Get PDF
    In order to decrease the peri-implant bone loss during the life-time of the implant, oral use of anti-osteoporosis drugs (like bisphosphonates) has been suggested. In this study, bone remodeling parameters identified from clinical trials of alendronate were used to simulate the effect of those drugs used after total hip arthroplasty on the peri-implant bone density. Results of the simulation show that the oral administrated drugs increase bone density around the implant and decreases, at the same time, the micromovements between the implant and the surrounding bone tissue. Incorporation of drug effect in numerical studies of bone remodeling is a promising tool especially to predetermine safe bisphosphonate doses that could be used with orthopedic implants

    How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; a finite element analysis

    Get PDF
    A numerical model of the medial open wedge tibial osteotomy based on the finite element method was developed. Two plate positions were tested numerically. In a configuration, (a), the plate was fixed in a medial position and (b) in an anteromedial position. The simulation took into account soft tissues preload, muscular tonus and maximal gait load.The maximal stresses observed in the four structural elements (bone, plate, wedge, screws) of an osteotomy with plate in medial position were substantially higher (1.13-2.8 times more) than those observed in osteotomy with an anteromedial plate configuration. An important increase (1.71 times more) of the relative micromotions between the wedge and the bone was also observed. In order to avoid formation of fibrous tissue at the bone wedge interface, the osteotomy should be loaded under 18.8% (approximately 50 kg) of the normal gait load until the osteotomy interfaces union is achieved

    Finite Element Analysis of Bone and Experimental Validation

    Get PDF
    This chapter describes the application of the finite element (FE) method to bone tissues. The aspects that differ the most between bone and other materials’ FE analysis are the type of elements used, constitutive models, and experimental validation. These aspects are looked at from a historical evolution stand point. Several types of elements can be used to simulate similar bone structures and within the same analysis many types of elements may be needed to realistically simulate an anatomical part. Special attention is made to constitutive models, including the use of density-elasticity relationships made possible through CT-scanned images. Other more complex models are also described that include viscoelasticity and anisotropy. The importance of experimental validation is discussed, describing several methods used by different authors in this challenging field. The use of cadaveric human bones is not always possible or desirable and other options are described, as the use of animal or artificial bones. Strain and strain rate measuring methods are also discussed, such as rosette strain gauges and optical devices.publishe

    Barriers to Predicting the Mechanisms and Risk Factors of Non-Contact Anterior Cruciate Ligament Injury

    Get PDF
    High incidences of non-contact anterior cruciate ligament (ACL) injury, frequent requirements for ACL reconstruction, and limited understanding of ACL mechanics have engendered considerable interest in quantifying the ACL loading mechanisms. Although some progress has been made to better understand non-contact ACL injuries, information on how and why non-contact ACL injuries occur is still largely unavailable. In other words, research is yet to yield consensus on injury mechanisms and risk factors. Biomechanics, video analysis, and related study approaches have elucidated to some extent how ACL injuries occur. However, these approaches are limited because they provide estimates, rather than precise measurements of knee - and more specifically ACL - kinematics at the time of injury. These study approaches are also limited in their inability to simultaneously capture many of the contributing factors to injury
    corecore