35 research outputs found

    Hydrostatic pressure effects on the donor impurity binding energy in symmetrical GaAs/Ga0.7Al0.3As double quantum well

    No full text
    By using the effective-mass approximation and the variational method, we calculate the effects of hydrostatic pressure on the binding energy for shallow-donor impurities in symmetrical GaAs/Ga0.7Al0.3 double quantum well structures. We consider different well and barrier widths, shallow-donor impurity positions, and hydrostatic pressures. Our results indicate that a proper knowledge of the impurity distribution inside the structure is of relevance in a quantitative compa-rison between theoretical and experimental results concerning the binding energy and optical-absorption spectra related to donor impurities in multiple quantum well systems under hydrostatic pressure

    Effects Of Hydrostatic Pressure And Aluminum Concentration On The Conduction-electron G Factor In Gaas-(ga,al)as Quantum Wells Under In-plane Magnetic Fields

    No full text
    The effects of hydrostatic pressure and aluminum concentration on the conduction-electron effective Landé g factor in semiconductor GaAs- Ga1-x Alx As quantum wells under in-plane magnetic fields are presented. Numerical calculations of the conduction-electron Landé g factor are performed by taking into account the nonparabolicity and anisotropy of the conduction band via the Ogg-McCombe Hamiltonian as well as the effects of aluminum concentration and applied hydrostatic pressure. Theoretical results are given as functions of the aluminum concentration in the Ga1-x Alx As barrier, orbit-center position, applied in-plane magnetic field, hydrostatic pressure, and quantum-well width, and found in good agreement with experimental measurements in GaAs- Ga1-x Alx As quantum wells for various values of the aluminum concentration x in the absence of hydrostatic pressure. © 2008 The American Physical Society.7711Weisbuch, C., Hermann, C., (1977) Phys. Rev. B, 15, p. 816. , PLRBAQ 0556-2805 10.1103/PhysRevB.15.816Hermann, C., Weisbuch, C., (1977) Phys. Rev. B, 15, p. 823. , PLRBAQ 0556-2805 10.1103/PhysRevB.15.823Oestreich, M., Rühle, W.W., (1995) Phys. Rev. Lett., 74, p. 2315. , PRLTAO 0031-9007 10.1103/PhysRevLett.74.2315Oestreich, M., Hallstein, S., Heberle, A.P., Eberl, K., Bauser, E., Rühle, W.W., (1996) Phys. Rev. B, 53, p. 7911. , PRBMDO 0163-1829 10.1103/PhysRevB.53.7911Hannak, R.M., Oestreich, M., Heberle, A.P., Ruhle, W.W., Kohler, K., (1995) Solid State Commun., 93, p. 313. , SSCOA4 0038-1098 10.1016/0038-1098(94)00784-5Le Jeune, P., Robart, D., Marie, X., Amand, T., Brosseau, M., Barrau, J., Kalevcih, V., Rodichev, D., (1997) Semicond. Sci. Technol., 12, p. 380. , SSTEET 0268-1242 10.1088/0268-1242/12/4/006Malinowski, A., Harley, R.T., (2000) Phys. Rev. B, 62, p. 2051. , PRBMDO 0163-1829 10.1103/PhysRevB.62.2051Heberle, A.P., Rühle, W.W., Ploog, K., (1994) Phys. Rev. Lett., 72, p. 3887. , PRLTAO 0031-9007 10.1103/PhysRevLett.72.3887Yugova, I.A., Greilich, A., Yakovlev, D.R., Kiselev, A.A., Bayer, M., Petrov, V.V., Dolgikh, Y.K., Wieck, A.D., (2007) Phys. Rev. B, 75, p. 245302. , PRBMDO 0163-1829 10.1103/PhysRevB.75.245302De Dios-Leyva, M., Reyes-Gómez, E., Perdomo-Leiva, C.A., Oliveira, L.E., (2006) Phys. Rev. B, 73, p. 085316. , PRBMDO 0163-1829 10.1103/PhysRevB.73.085316De Dios-Leyva, M., Porras-Montenegro, N., Brandi, H.S., Oliveira, L.E., (2006) J. Appl. Phys., 99, p. 104303. , JAPIAU 0021-8979 10.1063/1.2195885Kiselev, A.A., Ivchenko, E.L., Rössler, U., (1998) Phys. Rev. B, 58, p. 16353. , PRBMDO 0163-1829 10.1103/PhysRevB.58.16353Mayer Alegre, T.P., Hernández, F.G.G., Pereira, A.L.C., Medeiros-Ribeiro, G., (2006) Phys. Rev. Lett., 97, p. 236402. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.236402Reyes-Gómez, E., Perdomo-Leiva, C.A., De Dios-Leyva, M., Oliveira, L.E., (2006) Phys. Rev. B, 74, p. 033314. , PRBMDO 0163-1829 10.1103/PhysRevB.74.033314Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D., (2004) Science, 306, p. 1910. , SCIEAS 0036-8075 10.1126/science.1105514Zutic, I., Fabian, J., Das Sarma, S., (2004) Rev. Mod. Phys., 76, p. 323. , RMPHAT 0034-6861 10.1103/RevModPhys.76.323Chen, Z., Carter, S.G., Bratschitsch, R., Dawson, P., Cundiff, S.T., (2007) Nat. Phys., 3, p. 265. , ZZZZZZ 1745-2473Leadley, D.R., Nicholas, R.J., Maude, D.K., Utjuzh, A.N., Portal, J.C., Harris, J.J., Foxon, C.T., (1998) Semicond. Sci. Technol., 13, p. 671. , SSTEET 0268-1242 10.1088/0268-1242/13/7/004Bosio, C., Staehli, J.L., Guzzi, M., Burri, G., Logan, R.A., (1988) Phys. Rev. B, 38, p. 3263. , PRBMDO 0163-1829 10.1103/PhysRevB.38.3263Cheong, H.M., Burnett, J.H., Paul, W., Hopkins, P.F., Campman, K., Gossard, A.C., (1996) Phys. Rev. B, 53, p. 10916. , PRBMDO 0163-1829 10.1103/PhysRevB.53.10916Li, E.H., (2000) Physica e (Amsterdam), 5, p. 215. , PELNFM 1386-9477 10.1016/S1386-9477(99)00262-3Goñi, A.R., Syassen, K., Strössner, K., Cardona, M., (1989) Semicond. Sci. Technol., 4, p. 246. , SSTEET 0268-1242 10.1088/0268-1242/4/4/015Guzzi, M., Grilli, E., Oggioni, S., Staehli, J.L., Bosio, C., Pavesi, L., (1992) Phys. Rev. B, 45, p. 10951. , PRBMDO 0163-1829 10.1103/PhysRevB.45.10951Goñi, A.R., Strössner, K., Syassen, K., Cardona, M., (1987) Phys. Rev. B, 36, p. 1581. , PRBMDO 0163-1829 10.1103/PhysRevB.36.1581Ogg, N.R., (1966) Proc. Phys. Soc. London, 89, p. 431. , PPSOAU 0370-1328 10.1088/0370-1328/89/2/326McCombe, B.O., (1969) Phys. Rev., 181, p. 1206. , PHRVAO 0031-899X 10.1103/PhysRev.181.1206Golubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., (1985) Sov. Phys. JETP, 61, p. 1214. , SPHJAR 0038-5646Bronold, F.X., Martin, I., Saxena, A., Smith, D.L., (2002) Phys. Rev. B, 66, p. 233206. , PRBMDO 0163-1829 10.1103/PhysRevB.66.233206Dresselhaus, G., (1955) Phys. Rev., 100, p. 580. , PHRVAO 0031-899X 10.1103/PhysRev.100.580Reyes-Gómez, E., Porras-Montenegro, N., Perdomo-Leiva, C.A., Brandi, H.S., Oliveira, L.E., Zachau, M., Koch, F., Weimann, G., Schlapp, W., (1986) Phys. Rev. B, 33, p. 8564. , PRBMDO 0163-1829 10.1103/PhysRevB.33.8564Elabsy, A.M., (1994) J. Phys.: Condens. Matter, 6, p. 10025. , JCOMEL 0953-8984 10.1088/0953-8984/6/46/019Burnett, J.H., Cheong, H.M., Paul, W., Koteles, E.S., Elman, B., (1993) Phys. Rev. B, 47, p. 1991. , PRBMDO 0163-1829 10.1103/PhysRevB.47.1991Yu, P.Y., Cardona, M., (1998) Fundamentals of Semiconductors, , Springer-Verlag, BerlinAdachi, S., (1985) J. Appl. Phys., 58, p. 1. , JAPIAU 0021-8979 10.1063/1.33607

    Intraband Absorption In Gaas-(ga,al)as Variably Spaced Semiconductor Superlattices Under Crossed Electric And Magnetic Fields

    No full text
    A theoretical study of the intraband absorption properties of GaAs-Ga 1-xAlxAs variably spaced semiconductor superlattices under crossed magnetic and electric fields is presented. Calculations are performed for the applied electric field along the growth-axis direction, whereas the magnetic field is considered parallel to the heterostructure layers. By defining a critical electric field so that the heterostructure energy levels are aligned in the absence of the applied magnetic fields, one finds that, in the weak magnetic-field regime, an abrupt red shift of the absorption coefficient maxima is obtained at fields equal to or larger than the critical electric field, a fact which may be explained from the localization properties of the electron wave functions. Results in the strong magnetic-field regime reveal a rich structure on the intraband absorption coefficient which may be explained from the strong dispersion exhibited by both the energy levels and transition strengths as functions of the generalized orbit-center position. Moreover, the possibility of occurrence of absorption in a wide frequency range is also demonstrated. Present calculated results may be of interest for future design and improvement of multilayered-based photovoltaic and solar-cell devices. © 2013 EPLA.1044Barnham, K.W.J., Duggan, C., (1990) J. Appl. Phys., 67 (7), p. 3490. , 10.1063/1.345339 0021-8979Summers, C.J., Brennan, K.F., (1986) Appl. Phys. Lett., 48 (12), p. 806. , 10.1063/1.96676 0003-6951Summers, C.J., Brennan, K.F., (1987) Appl. Phys. Lett., 51 (4), p. 276. , 10.1063/1.98992 0003-6951Brennan, K.F., Summers, C.J., (1987) J. Appl. Phys., 61 (12), p. 5410. , 10.1063/1.338281 0021-8979Brennan, K.F., Summers, C.J., (1987) J. Appl. Phys., 61 (2), p. 614. , 10.1063/1.338213 0021-8979Courel, M., Rimada, J.C., Hernández, L., (2012) Appl. Phys. Lett., 100 (7). , 10.1063/1.3687195 0003-6951 073508Courel, M., Rimada, J.C., Hernández, L., (2012) J. Appl. Phys., 112 (5). , 10.1063/1.4749418 0021-8979 054511Cabrera, I., Rimada, J.C., Connolly, J.P., Hernández, L., (2013) J. Appl. Phys., 113 (2). , 10.1063/1.4775404 0021-8979 024512Jo, M., Ding, Y., Noda, T., Mano, T., Sakuma, Y., Sakoda, K., Ham, L., Sakaki, H., (2013) Appl. Phys. Lett., 103 (6). , 10.1063/1.4818510 0003-6951 061118Reyes-Gomez, E., Oliveira, L.E., De Dios-Leyva, M., Quasi-bound states and intra-band transition energies in GaAs-(Ga,Al)As variably spaced semiconductor superlattices (2005) Physica B: Condensed Matter, 358 (1-4), pp. 269-278. , DOI 10.1016/j.physb.2005.01.462, PII S0921452605004990De Dios-Leyva, M., Bruno-Alfonso, A., Oliveira, L.E., (1997) J. Phys.: Condens. Matter, 9 (5), p. 1005. , 0953-8984 007De Dios-Leyva, M., Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., (1995) J. Phys.: Condens. Matter, 7 (50), p. 9799. , 0953-8984 014Cao, S.M., Willander, M., Ivchenko, E.L., Nesvizhskii, A.I., Toropov, A.A., (1995) Superlattices Microstruct., 17 (1), p. 97. , 10.1006/spmi.1995.1020 0749-6036Cao, S.M., Willander, M., Toropov, A.A., Shubina, T.V., Ya. Mel'Tser, B., Shaposhnikov, S.V., Ko'Pev, P.S., Monemar, B., (1995) Phys. Rev. B, 51 (23). , 10.1103/PhysRevB.51.17267 0163-1829 1726

    Effects Of Hydrostatic Pressure And Applied Electric Fields On The Exciton States In Gaas - (ga,al)as Quantum Wells

    No full text
    The effects of both hydrostatic pressure and electric fields applied perpendicular to the layers on the direct-exciton states in single GaAs-(Ga,Al)As quantum wells are studied. Theoretical calculations are performed within the variational procedure, in the framework of the effective-mass and non-degenerate parabolic-band approximations. Both heavy- and light-hole exciton energies and corresponding quantum-confined Bohr radii are obtained. The pressure coefficient is also theoretically evaluated and found in good agreement with available experimental measurements. © 2005 Elsevier B.V. All rights reserved.3671-4267274Aspnes, D.E., (1976) Phys. Rev. B, 14, p. 5331Samara, G.A., (1983) Phys. Rev. B, 27, p. 3494Adachi, S., (1985) J. Appl. Phys., 58, pp. R1Venkateswaran, U., Chandrasekhar, M., Chandrasekhar, H.R., Wolfram, T., Ficher, R., Masselink, W.T., Morkoç, H., (1985) Phys. Rev. B, 31, p. 4106Venkateswaran, U., Chandrasekhar, M., Chandrasekhar, H.R., Bojak, B.A., Chambers, F.A., Meese, J.M., (1986) Phys. Rev. B, 33, p. 8416Elabsy, A.M., (1994) J. Phys.: Condens. Matter, 6, p. 10025Burnett, J.H., Cheong, H.M., Paul, W., Koteles, E.S., Elman, B., (1993) Phys. Rev. B, 47, p. 1991Guha, S., Cai, Q., Chandrasekhar, M., Chandrasekhar, H.R., Kim, H., Alvarenga, A.D., Vogelgesang, R., Melloch, M.R., (1998) Phys. Rev. B, 58, p. 7222Zhang, Y., Mascarenhas, A., (1999) Phys. Rev. B, 59, p. 2040Morales, A.L., Montes, A., López, S.Y., Duque, C.A., (2002) J. Phys. Condens. Matter, 14, p. 987Niculescu, E., (2003) Superlatt. Microstruct., 33, p. 103Szymanska, M.H., Littlewood, P.B., (2003) Phys. Rev. B, 67, p. 193305Raigoza, N., Morales, A.L., Montes, A., Porras-Montenegro, N., Duque, C.A., (2004) Phys. Rev. B, 69, p. 045323Morales, A.L., Raigoza, N., Montes, A., Porras-Montenegro, N., Duque, C.A., (2004) Phys. Stat. Sol. (B), 241, p. 3224Kasapoglu, E., Sari, H., Sökmen, I., (2004) Physica B, 353, p. 345Reyes-Gómez, E., Villalba-Chávez, S., Oliveira, L.E., De Dios-Leyva, M., (2004) J. Phys. D Appl. Phys., 37, p. 660López-Gondar, J., D'Albuquerque Castro, E.J., Oliveira, L.E., (1990) Phys. Rev. B, 42, p. 7069Yu, P.Y., Cardona, M., (1998) Fundamentals of Semiconductors, , Springer Berli

    Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs-(Ga,Al)As quantum wells

    No full text
    The effects of both hydrostatic pressure and electric fields applied perpendicular to the layers on the direct-exciton states in single GaAs-(Ga,AI)As quantum wells are studied. Theoretical calculations are performed within the variational procedure, in the framework of the effective-mass and non-degenerate parabolic-band approximations. Both heavy- and light-hole exciton energies and corresponding quantum-confined Bohr radii are obtained. The pressure coefficient is also theoretically evaluated and found in good agreement with available experimental measurements. (c) 2005 Elsevier B.V. All rights reserved.3674173026727

    Effects Of Growth-direction Electric And Magnetic Fields On Excitons In Gaas- Ga1-x Alx As Coupled Double Quantum Wells

    No full text
    Direct and indirect excitons in GaAs- Ga1-x Alx As coupled double quantum wells, under growth-direction applied electric and magnetic fields, have been theoretically investigated within a variational procedure in the effective-mass and parabolic-band approximations. The exciton hydrogenic 1s -like envelope wave function is obtained through a variational procedure and an appropriate expansion in trigonometric functions of the electron and hole wave functions. The applied electric field produces a polarization of the exciton by pushing the electron and hole away from each other, whereas the magnetic field contracts the exciton by pushing the electron and hole closer to each other. Intersubband mixing produced by the Coulomb interaction of electron-hole pairs is taken into account and a detailed analysis of the properties of direct- and indirect-exciton states in GaAs- Ga1-x Alx As coupled double quantum wells is presented, with theoretical results in good agreement with available experimental measurements. © 2008 The American Physical Society.7711Orlita, M., Grill, R., Hlídek, P., Zvára, M., Döhler, G.H., Malzer, S., Byszewski, M., (2005) Phys. Rev. B, 72, p. 165314. , PRBMDO 0163-1829 10.1103/PhysRevB.72.165314Ashkinadze, B.M., Cohen, E., Rudenkov, V.V., Christianen, P.C.M., Maan, J.C., Pfeiffer, L.N., (2007) Phys. Rev. B, 76, p. 075344. , PRBMDO 0163-1829 10.1103/PhysRevB.76.075344Gärtner, A., Prechtel, L., Schuh, D., Holleitner, A.W., Kotthaus, J.P., (2007) Phys. Rev. B, 76, p. 085304. , PRBMDO 0163-1829 10.1103/PhysRevB.76.085304Lee, K., Kyu Noh, S., Kyung Chang, S., (2007) Phys. Rev. B, 76, p. 073305. , PRBMDO 0163-1829 10.1103/PhysRevB.76.073305Galbraith, I., Duggan, G., (1989) Phys. Rev. B, 40, p. 5515. , PRBMDO 0163-1829 10.1103/PhysRevB.40.5515Greene, R.L., Bajaj, K.K., (1988) Phys. Rev. B, 37, p. 4604. , PRBMDO 0163-1829 10.1103/PhysRevB.37.4604Fox, A.M., Miller, D.A.B., Livescu, G., Cunningham, J.E., Jan, W.Y., (1991) Phys. Rev. B, 44, p. 6231. , PRBMDO 0163-1829 10.1103/PhysRevB.44.6231Cen, J., Branis, S.V., Bajaj, K.K., (1991) Phys. Rev. B, 44, p. 12848. , PRBMDO 0163-1829 10.1103/PhysRevB.44.12848Soubusta, J., Grill, R., Hlídek, P., Zvára, M., Smrcka, L., Malzer, S., Geißelbrecht, W., Döhler, G.H., (1999) Phys. Rev. B, 60, p. 7740. , PRBMDO 0163-1829 10.1103/PhysRevB.60.7740Lozovik, Y.E., Ovchinnikov, I.V., Yu. Volkov, S., Butov, L.V., Chemla, D.S., (2002) Phys. Rev. B, 65, p. 235304. , PRBMDO 0163-1829 10.1103/PhysRevB.65.235304Butov, L.V., Imamoglu, A., Mintsev, A.V., Campman, K.L., Gossard, A.C., (1999) Phys. Rev. B, 59, p. 1625. , PRBMDO 0163-1829 10.1103/PhysRevB.59.1625Butov, L.V., Mintsev, A.V., Lozovik, Y.E., Campman, K.L., Gossard, A.C., (2000) Phys. Rev. B, 62, p. 1548. , PRBMDO 0163-1829 10.1103/PhysRevB.62.1548Parlangeli, A., Christianen, P.C.M., Maan, J.C., Tokatly, I.V., Soerensen, C.B., Lindelof, P.E., (2000) Phys. Rev. B, 62, p. 15323. , PRBMDO 0163-1829 10.1103/PhysRevB.62.15323Butov, L.V., Shashkin, A.A., Dolgopolov, V.T., Campman, K.L., Gossard, A.C., (1999) Phys. Rev. B, 60, p. 8753. , PRBMDO 0163-1829 10.1103/PhysRevB.60.8753De Dios-Leyva, M., Duque, C.A., Oliveira, L.E., (2007) Phys. Rev. B, 76, p. 075303. , PRBMDO 0163-1829 10.1103/PhysRevB.76.075303Gorkov, L.P., Dzyaloshinskii, I.E., (1968) Sov. Phys. JETP, 26, p. 449. , SPHJAR 0038-5646Chang, K., Peeters, F.M., (2001) Phys. Rev. B, 63, p. 153307. , PRBMDO 0163-1829 10.1103/PhysRevB.63.153307Li, E.H., (2000) Physica e (Amsterdam), 5, p. 215. , PELNFM 1386-9477 10.1016/S1386-9477(99)00262-3Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, p. 8508. , PRBMDO 0163-1829 10.1103/PhysRevB.40.850

    Intraband absorption in GaAs-(Ga,Al) As variably spaced semiconductor superlattices under crossed electric and magnetic fields

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)A theoretical study of the intraband absorption properties of GaAs-Ga1-xAlxAs variably spaced semiconductor superlattices under crossed magnetic and electric fields is presented. Calculations are performed for the applied electric field along the growth-axis direction, whereas the magnetic field is considered parallel to the heterostructure layers. By defining a critical electric field so that the heterostructure energy levels are aligned in the absence of the applied magnetic fields, one finds that, in the weak magnetic-field regime, an abrupt red shift of the absorption coefficient maxima is obtained at fields equal to or larger than the critical electric field, a fact which may be explained from the localization properties of the electron wave functions. Results in the strong magnetic-field regime reveal a rich structure on the intraband absorption coefficient which may be explained from the strong dispersion exhibited by both the energy levels and transition strengths as functions of the generalized orbit-center position. Moreover, the possibility of occurrence of absorption in a wide frequency range is also demonstrated. Present calculated results may be of interest for future design and improvement of multilayered-based photovoltaic and solar-cell devices. Copyright (C) EPLA, 20131044Scientific Colombian Agency CODI - University of AntioquiaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAEPEX-UNICAMPConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2012/51691-0

    Hydrostatic Pressure And Growth-direction Magnetic Field Effects On The Exciton States In Coupled Gaas-(ga, Al)as Quantum Wells

    No full text
    The effects of hydrostatic pressure and growth-direction applied magnetic fields on the exciton dispersion and in-plane effective mass in coupled GaAs-(Ga, Al)As quantum wells are investigated. Calculations for spatially direct and indirect excitons were performed within the variational procedure in the effective-mass and nondegenerate parabolic band approximations and by taking into account the coupling between the exciton centre-of-mass momentum and its internal structure. The pressure coefficient is also obtained as a function of both the hydrostatic pressure and growth-direction applied magnetic field. © IOP Publishing Ltd.1925Lozovik Yu, E., Berman, O.L., Willander, M., (2002) J. Phys.: Condens. Matter, 14 (47), p. 12457Butov, L.V., Lai, C.W., Ivanov, A.L., Gossard, A.C., Chemla, D.S., (2002) Nature, 417 (6884), p. 47Gor'Kov, L.P., Dzyaloshinskii, I.E., (1968) Sov. Phys.-JETP, 26, p. 449Paquet, D., Rice, T.M., Ueda, K., (1985) Phys. Rev., 32 (8), p. 5208Fritze, M., Perakis, I.E., Getter, A., Knox, W., Goosen, K.W., Cunningham, J.E., Jackson, S.A., (1996) Phys. Rev. Lett., 76 (1), p. 106Butov, L.V., Lai, C.W., Chemla, D.S., Lozovik Yu, E., Campman, K.L., Gossard, A.C., (2001) Phys. Rev. Lett., 87 (21), p. 216804Lozovik Yu, E., Ovchinnikov, I.V., Yu, V.S., Butov, L.V., Chemla, D.S., (2002) Phys. Rev., 65 (23), p. 235304Reyes-Gómez, E., Oliveira, L.E., De Dios-Leyva, M., (2005) Phys. Rev., 71, p. 045316Reyes-Gómez, E., Oliveira, L.E., De Dios-Leyva, M., (2005) Phys. Status Solidi, 242 (9), p. 1829Samara, G.A., (1983) Phys. Rev., 27 (6), p. 3494Venkateswaran, U., Chandrasekhar, M., Chandrasekhar, H.R., Wolfram, T., Ficher, R., Masselink, W.T., Morkoç, H., (1985) Phys. Rev., 31 (6), p. 4106Venkateswaran, U., Chandrasekhar, M., Chandrasekhar, H.R., Bojak, B.A., Chambers, F.A., Meese, J.M., (1986) Phys. Rev., 33 (12), p. 8416Elabsy, A.M., (1994) J. Phys.: Condens. Matter, 6 (46), p. 10025Guha, S., Cai, Q., Chandrasekas, M., Chandrasekar, H.R., Kim, H., Alvarenga, A.D., Vogelgesang, R., Melloch, M.R., (1998) Phys. Rev., 58 (11), p. 7222Morales, A.L., Montes, A., López, S.Y., Duque, C.A., (2002) J. Phys.: Condens. Matter, 14 (5), p. 987Raigoza, N., Duque, C.A., Reyes-Gómez, E., Oliveira, L.E., (2005) Physica, 367 (1-4), p. 267Raigoza, N., Duque, C.A., Reyes-Gómez, E., Oliveira, L.E., (2006) Phys. Status Solidi, 243 (3), p. 635Herbert Li, E., (2000) Physica, 5 (4), p. 215Kopf, R.F., Herman, M.H., Lamont Schones, M., Perley, A.P., Livescu, G., Ohring, M., (1992) J. Appl. Phys., 71 (10), p. 5004Aspnes, D.E., (1976) Phys. Rev., 14 (12), p. 5331Yu, P.Y., Cardona, M., (1998) Fundamentals of Semiconductor

    Effects of growth-direction electric and magnetic fields on excitons in GaAs-Ga(1-x)Al(x)As coupled double quantum wells

    No full text
    Direct and indirect excitons in GaAs-Ga(1-x)Al(x)As coupled double quantum wells, under growth-direction applied electric and magnetic fields, have been theoretically investigated within a variational procedure in the effective-mass and parabolic-band approximations. The exciton hydrogenic 1s-like envelope wave function is obtained through a variational procedure and an appropriate expansion in trigonometric functions of the electron and hole wave functions. The applied electric field produces a polarization of the exciton by pushing the electron and hole away from each other, whereas the magnetic field contracts the exciton by pushing the electron and hole closer to each other. Intersubband mixing produced by the Coulomb interaction of electron-hole pairs is taken into account and a detailed analysis of the properties of direct- and indirect-exciton states in GaAs-Ga(1-x)Al(x)As coupled double quantum wells is presented, with theoretical results in good agreement with available experimental measurements.771
    corecore