1,434 research outputs found
Nowhere to Hide: Radio-faint AGN in the GOODS-N field. I. Initial catalogue and radio properties
(Abridged) Conventional radio surveys of deep fields ordinarily have
arc-second scale resolutions often insufficient to reliably separate radio
emission in distant galaxies originating from star-formation and AGN-related
activity. Very long baseline interferometry (VLBI) can offer a solution by
identifying only the most compact radio emitting regions in galaxies at
cosmological distances where the high brightness temperatures (in excess of
 K) can only be reliably attributed to AGN activity. We present the first
in a series of papers exploring the faint compact radio population using a new
wide-field VLBI survey of the GOODS-N field. The unparalleled sensitivity of
the European VLBI Network (EVN) will probe a luminosity range rarely seen in
deep wide-field VLBI observations, thus providing insights into the role of AGN
to radio luminosities of the order  across cosmic
time. The newest VLBI techniques are used to completely cover an entire 7'.5
radius area to milliarcsecond resolutions, while bright radio sources ( mJy) are targeted up to 25 arcmin from the pointing centre. Multi-source
self-calibration, and a primary beam model for the EVN array are used to
correct for residual phase errors and primary beam attenuation respectively.
This paper presents the largest catalogue of VLBI detected sources in GOODS-N
comprising of 31 compact radio sources across a redshift range of 0.11-3.44,
almost three times more than previous VLBI surveys in this field. We provide a
machine-readable catalogue and introduce the radio properties of the detected
sources using complementary data from the e-MERLIN Galaxy Evolution survey
(eMERGE).Comment: 15 pages, 8 figures, accepted in A&A. Machine-readable table
  available upon reques
Memetic Multilevel Hypergraph Partitioning
Hypergraph partitioning has a wide range of important applications such as
VLSI design or scientific computing. With focus on solution quality, we develop
the first multilevel memetic algorithm to tackle the problem. Key components of
our contribution are new effective multilevel recombination and mutation
operations that provide a large amount of diversity. We perform a wide range of
experiments on a benchmark set containing instances from application areas such
VLSI, SAT solving, social networks, and scientific computing. Compared to the
state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our
new algorithm computes the best result on almost all instances
Coherent pairing states for the Hubbard model
We consider the Hubbard model and its extensions on bipartite lattices. We
define a dynamical group based on the -pairing operators introduced by
C.N.Yang, and define coherent pairing states, which are combinations of
eigenfunctions of -operators. These states permit exact calculations of
numerous physical properties of the system, including energy, various
fluctuations and correlation functions, including pairing ODLRO to all orders.
This approach is complementary to BCS, in that these are superconducting
coherent states associated with the exact model, although they are not
eigenstates of the Hamiltonian.Comment: 5 pages, RevTe
Algebraic analysis of a model of two-dimensional gravity
An algebraic analysis of the Hamiltonian formulation of the model
two-dimensional gravity is performed. The crucial fact is an exact coincidence
of the Poisson brackets algebra of the secondary constraints of this
Hamiltonian formulation with the SO(2,1)-algebra. The eigenvectors of the
canonical Hamiltonian  are obtained and explicitly written in closed
form.Comment: 21 pages, to appear in General Relativity and Gravitatio
Fluctuations and Dissipation of Coherent Magnetization
A quantum mechanical model is used to derive a generalized Landau-Lifshitz
equation for a magnetic moment, including fluctuations and dissipation. The
model reproduces the Gilbert-Brown form of the equation in the classical limit.
The magnetic moment is linearly coupled to a reservoir of bosonic degrees of
freedom. Use of generalized coherent states makes the semiclassical limit more
transparent within a path-integral formulation. A general
fluctuation-dissipation theorem is derived. The magnitude of the magnetic
moment also fluctuates beyond the Gaussian approximation. We discuss how the
approximate stochastic description of the thermal field follows from our
result. As an example, we go beyond the linear-response method and show how the
thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page
Scalar quantum kinetic theory for spin-1/2 particles: mean field theory
Starting from the Pauli Hamiltonian operator, we derive a scalar quantum
kinetic equations for spin-1/2 systems. Here the regular Wigner two-state
matrix is replaced by a scalar distribution function in extended phase space.
Apart from being a formulation of principal interest, such scalar quantum
kinetic equation makes the comparison to classical kinetic theory
straightforward, and lends itself naturally to currently available numerical
Vlasov and Boltzmann schemes. Moreover, while the quasi-distribution is a
Wigner function in regular phase space, it is given by a Q-function in spin
space. As such, nonlinear and dynamical quantum plasma problems are readily
handled. Moreover, the issue of gauge invariance is treated. Applications (e.g.
ultra-dense laser compressed targets and their diagnostics), possible
extensions, and future improvements of the presented quantum statistical model
are discussed.Comment: 21 pages, 2 figure
Monge Distance between Quantum States
We define a metric in the space of quantum states taking the Monge distance
between corresponding Husimi distributions (Q--functions). This quantity
fulfills the axioms of a metric and satisfies the following semiclassical
property: the distance between two coherent states is equal to the Euclidean
distance between corresponding points in the classical phase space. We compute
analytically distances between certain states (coherent, squeezed, Fock and
thermal) and discuss a scheme for numerical computation of Monge distance for
two arbitrary quantum states.Comment: 9 pages in LaTex - RevTex + 2 figures in ps. submitted to Phys. Rev.
  
Elective Modernism and the Politics of (Bio) Ethical Expertise
In this essay I consider whether the political perspective of third wave science studies – ‘elective modernism’ – offers a suitable framework for understanding the policy-making contributions that (bio)ethical experts might make. The question arises as a consequence of the fact that I have taken inspiration from the third wave in order to develop an account of (bio)ethical expertise. I offer a précis of this work and a brief summary of elective modernism before considering their relation. The view I set out suggests that elective modernism is a political philosophy and that although its use in relation to the use of scientific expertise in political and policy-making process has implications for the role of (bio)ethical expertise it does not, in the final analysis, provide an account that is appropriate for this latter form of specialist expertise. Nevertheless, it is an informative perspective, and one that can help us make sense of the political uses of (bio)ethical expertise
Critical behavior of thermopower and conductivity at the metal-insulator transition in high-mobility Si-MOSFET's
This letter reports thermopower and conductivity measurements through the
metal-insulator transition for 2-dimensional electron gases in high mobility
Si-MOSFET's. At low temperatures both thermopower and conductivity show
critical behavior as a function of electron density which is very similar to
that expected for an Anderson transition. In particular, when approaching the
critical density from the metallic side the diffusion thermopower appears to
diverge and the conductivity vanishes. On the insulating side the thermopower
shows an upturn with decreasing temperature.Comment: 4 pages with 3 figure
- …
