4,162 research outputs found

    Order statistics of 1/f^{\alpha} signals

    Get PDF
    Order statistics of periodic, Gaussian noise with 1/f^{\alpha} power spectrum is investigated. Using simulations and phenomenological arguments, we find three scaling regimes for the average gap d_k= between the k-th and (k+1)-st largest values of the signal. The result d_k ~ 1/k known for independent, identically distributed variables remains valid for 0<\alpha<1. Nontrivial, \alpha-dependent scaling exponents d_k ~ k^{(\alpha -3)/2} emerge for 1<\alpha<5 and, finally, \alpha-independent scaling, d_k ~ k is obtained for \alpha>5. The spectra of average ordered values \epsilon_k= ~ k^{\beta} is also examined. The exponent {\beta} is derived from the gap scaling as well as by relating \epsilon_k to the density of near extreme states. Known results for the density of near extreme states combined with scaling suggest that \beta(\alpha=2)=1/2, \beta(4)=3/2, and beta(infinity)=2 are exact values. We also show that parallels can be drawn between \epsilon_k and the quantum mechanical spectra of a particle in power-law potentials.Comment: 8 pages, 5 figure

    Using Nanotechnology to Detect Nerve Agents

    Get PDF
    Nanotechnology has opened a wide range of opportunities having potential impacts in areas as diverse as medicine and consumer products. In collaboration with researchers at the University of Toledo UT, Air Force Institute of Technology AFIT scientists are exploring the possibility of using a nanoscale organic matrix to detect organophosphate OP nerve agents. Current techniques for detecting OP compounds are expensive and time consuming. Developing a nanoscale organic matrix sensor would allow for direct, real-time sensing under field conditions. This article describes the science behind such a sensor and its possible applications. High-performance sensors are needed to protect Soldiers and civilians from attack. At present, doctrine requires Air Force units to resume their primary mission within two hours of a chemical or biological strike.1 Meeting the two-hour operational goal may mean the difference between defeat and victory. However, OP detection capabilities now in place are limited in sensitivity, time required to operate, and ease of use, making the specified two-hour window difficult to meet

    Foreign Object Damage in a Gas-Turbine Grade Silicon Nitride by Spherical Projectiles of Various Materials

    Get PDF
    Assessments of foreign object damage (FOD) of a commercial, gas-turbine grade, in situ toughened silicon nitride ceramic (AS800, Honeywell Ceramics Components) were made using four different projectile materials at ambient temperature. AS800 flexure target specimens rigidly supported were impacted at their centers in a velocity range from 50 to 450 m/s by spherical projectiles with a diameter of 1.59 mm. Four different projectile materials were used including hardened steel, annealed steel, silicon nitride ceramic, and brass. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to appraise the severity of local impact damage. For a given impact velocity, the degree of strength degradation was greatest for ceramic balls, least for brass balls, and intermediate for annealed and hardened steel balls. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles. Impact load as a function of impact velocity was quasi-statically estimated based on both impact and static indentation associated data

    Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory

    Get PDF
    We analyze black hole thermodynamics in a generalized theory of gravity whose Lagrangian is an arbitrary function of the metric, the Ricci tensor and a scalar field. We can convert the theory into the Einstein frame via a "Legendre" transformation or a conformal transformation. We calculate thermodynamical variables both in the original frame and in the Einstein frame, following the Iyer--Wald definition which satisfies the first law of thermodynamics. We show that all thermodynamical variables defined in the original frame are the same as those in the Einstein frame, if the spacetimes in both frames are asymptotically flat, regular and possess event horizons with non-zero temperatures. This result may be useful to study whether the second law is still valid in the generalized theory of gravity.Comment: 14 pages, no figure

    How a spin-glass remembers. Memory and rejuvenation from intermittency data: an analysis of temperature shifts

    Full text link
    The memory and rejuvenation aspects of intermittent heat transport are explored theoretically and by numerical simulation for Ising spin glasses with short-ranged interactions. The theoretical part develops a picture of non-equilibrium glassy dynamics recently introduced by the authors. Invoking the concept of marginal stability, this theory links irreversible `intermittent' events, or `quakes' to thermal fluctuations of record magnitude. The pivotal idea is that the largest energy barrier b(tw,T)b(t_w,T) surmounted prior to twt_w by thermal fluctuations at temperature TT determines the rate rq1/twr_q \propto 1/t_w of the intermittent events occurring near twt_w. The idea leads to a rate of intermittent events after a negative temperature shift given by rq1/tweffr_q \propto 1/t_w^{eff}, where the `effective age' twefftwt_w^{eff} \geq t_w has an algebraic dependence on twt_w, whose exponent contains the temperatures before and after the shift. The analytical expression is verified by numerical simulations. Marginal stability suggests that a positive temperature shift TTT \to T' could erase the memory of the barrier b(tw,T)b(t_w,T). The simulations show that the barrier b(tw,T)b(tw,T)b(t_w,T') \geq b(t_w,T) controls the intermittent dynamics, whose rate is hence rq1/twr_q \propto 1/t_w. Additional `rejuvenation' effects are also identified in the intermittency data for shifts of both signs.Comment: Revised introduction and discussion. Final version to appear in Journal of Statistical Mechanics: Theory and Experimen

    Using XDAQ in Application Scenarios of the CMS Experiment

    Full text link
    XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in the CMS experiment. They cover not the deployment for multiple sub-detectors and the operation of different processing and networking equipment as well as a distributed collaboration of users with different needs. The use of the software in various application scenarios demonstrated the viability of the approach. We discuss two applications, the tracker local DAQ system for front-end commissioning and the muon chamber validation system. The description is completed by a brief overview of XDAQ.Comment: Conference CHEP 2003 (Computing in High Energy and Nuclear Physics, La Jolla, CA

    Exact Results for Diffusion-Limited Reactions with Synchronous Dynamics

    Full text link
    A new method is introduced allowing to solve exactly the reactions A+A->inert and A+A->A on the 1D lattice with synchronous diffusional dynamics (simultaneous hopping of all particles). Exact connections are found relating densities and certain correlation properties of these two reactions at all times. Asymptotic behavior at large times as well as scaling form describing the regime of low initial density, are derived explicitly.Comment: 12 pages in plain Te
    corecore