14 research outputs found

    Separated and overlapping neural coding of face and body identity

    Get PDF
    Recognising a person's identity often relies on face and body information, and is tolerant to changes in low-level visual input (e.g., viewpoint changes). Previous studies have suggested that face identity is disentangled from low-level visual input in the anterior face-responsive regions. It remains unclear which regions disentangle body identity from variations in viewpoint, and whether face and body identity are encoded separately or combined into a coherent person identity representation. We trained participants to recognise three identities, and then recorded their brain activity using fMRI while they viewed face and body images of these three identities from different viewpoints. Participants' task was to respond to either the stimulus identity or viewpoint. We found consistent decoding of body identity across viewpoint in the fusiform body area, right anterior temporal cortex, middle frontal gyrus and right insula. This finding demonstrates a similar function of fusiform and anterior temporal cortex for bodies as has previously been shown for faces, suggesting these regions may play a general role in extracting high-level identity information. Moreover, we could decode identity across fMRI activity evoked by faces and bodies in the early visual cortex, right inferior occipital cortex, right parahippocampal cortex and right superior parietal cortex, revealing a distributed network that encodes person identity abstractly. Lastly, identity decoding was consistently better when participants attended to identity, indicating that attention to identity enhances its neural representation. These results offer new insights into how the brain develops an abstract neural coding of person identity, shared by faces and bodies

    Short and Long-term Influence of Phenothiazines On Liver Peroxisomal Fatty-acid Oxidation in Rodents

    Get PDF
    AbstractEvidence is given that phenothiazines depress hepatic peroxisomal fatty acid oxidation in vivo. After oral administration to rats thioridazine and chlorpromazine inhibit peroxisomal β-oxidation, evaluated by H2O2 production, during 2 weeks. In mice, this effect could not be demonstrated. However, in both species VLCFA are increased after short and long term drug administration. Electron microscopy reveals the presence of membranous structures in liver cytoplasm or lysosomes. The inhibition by thioridazine of peroxisomal β-oxidation does not lead to hepatic peroxisome proliferation. The activities of enzymes related to fatty acid breakdown are not increased and liver peroxisomes are microscopically normal

    Neural effects of transcranial magnetic stimulation at the single-cell level

    Get PDF
    Transcranial magnetic stimulation (TMS) can non-invasively modulate neural activity in humans. Despite three decades of research, the spatial extent of the cortical area activated by TMS is still controversial. Moreover, how TMS interacts with task-related activity during motor behavior is unknown. Here, we applied single-pulse TMS over macaque parietal cortex while recording single-unit activity at various distances from the center of stimulation during grasping. The spatial extent of TMS-induced activation is remarkably restricted, affecting the spiking activity of single neurons in an area of cortex measuring less than 2 mm in diameter. In task-related neurons, TMS evokes a transient excitation followed by reduced activity, paralleled by a significantly longer grasping time. Furthermore, TMS-induced activity and task-related activity do not summate in single neurons. These results furnish crucial experimental evidence for the neural effects of TMS at the single-cell level and uncover the neural underpinnings of behavioral effects of TMS.Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Odysseus (G.0007.12, G.0C51.13N), and Program Financing (PFV10/008)
    corecore