129 research outputs found

    Brief Communication: Sexual dimorphic expression of myostatin and follistatin like-3 in a rat trans-generational under-nutrition model

    Get PDF
    The detrimental effects of maternal under-nutrition during gestation on fetal development are well known with an increased propensity of metabolic disorders identified in the adult offspring. Understanding exactly how and by which molecular pathways inadequate nutrition can impact upon offspring phenotype is critical and necessary for the development of treatment methods and ultimately prevention of any negative health effects. Myostatin, a negative regulator of muscle development, has recently been shown to effect glucose homeostasis and fat deposition. The involvement of myostatin in glucose metabolism and adipogenesis thus supports its ability to act in the continued alterations to the postnatal phenotype of the offspring. This hypothesis was examined in the current study using a trans-generational gestationally under-nourished rat model exposed to a high-fat (HF) diet post-weaning. The body weight, body fat, plasma glucose and insulin concentrations of the offspring, both male and female, were investigated in relation to the protein expression of myostatin and its main inhibitor; follistatin like-3 (FSTL-3), in skeletal muscle of mature offspring. Sexual dimorphism was clearly evident in the majority of these measures, including myostatin and FSTL-3 expression. Generally males displayed higher (P < 0.05) myostatin precursor and dimer expression than females, which was especially apparent (P < 0.01) in both chow and HF trans-generationally undernourished (UNAD) groups. In females only, myostatin precursor and dimer expression was altered by both trans-generational under-nutrition and postnatal diet. Overall FSTL-3 expression did not differ between sexes, although difference between sexes within certain treatments and diets were evident. Most notably, HF fed UNAD females had higher (P < 0.05) FSTL-3 expression than HF fed UNAD males. The former group also displayed higher (P < 0.01) FSTL-3 expression compared to all other female groups. In summary, myostatin may prove to be a key mediator of the effects of inadequate prenatal nutrition, independently or in combination with a high-fat postnatal diet on offspring phenotype. Consequently, further study of myostatin may provide a novel therapeutic pathway for the treatment of metabolic disorders; however, it is vital that the influence of nutrition and gender should be taken into consideration

    Differential effects of natural palm oil, chemically- and enzymatically-modified palm oil on weight gain, blood lipid metabolites and fat deposition in a pediatric pig model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing prevalence of obesity and overweight in the Western world, continue to be a major health threat and is responsible for increased health care costs. Dietary intervention studies show a strong positive association between saturated fat intake and the development of obesity and cardiovascular disease. This study investigated the effect of positional distribution of palmitic acid (Sn-1, 2 & 3) of palm oil on cardiovascular health and development of obesity, using weaner pigs as a model for young children.</p> <p>Methods</p> <p>Male and female weaner piglets were randomly allocated to 4 dietary treatment groups: 1) pork lard (LRD); 2) natural palm olein (NPO); 3) chemically inter-esterified PO (CPO) and 4) enzymatically inter-esterified PO (EnPO) as the fat source. Diets were formulated with 11% lard or with palm olein in order to provide 31% of digestible energy from fat in the diet and were balanced for cholesterol, protein and energy across treatments.</p> <p>Results</p> <p>From 8 weeks onwards, pigs on EnPO diet gained (P < 0.05) more weight than all other groups. Feed conversion efficiency (feed to gain) over the 12 week experimental period did not vary between treatment groups. Plasma LDL-C content and LDL-C/HDL-C ratio in pigs fed natural PO tended to be lower compared to all other diets. The natural PO lowered (P < 0.02) the plasma triglyceride (TG) content relative to the lard or EnPO diets, but was not different from the CPO diet. The natural PO diet was associated with lower (P < 0.05) saturated fat levels in subcutaneous adipose tissue than the CPO and EnPO diets that had lower saturated fat levels than the lard diet. Female pigs had lower lean and higher fat and fat:lean ratio in the body compared with male pigs. No difference in weight gain or blood lipid parameters was observed between sexes.</p> <p>Conclusions</p> <p>The observations on plasma TG, muscle and adipose tissue saturated fatty acid contents and back fat (subcutaneous) thickness suggest that natural palm oil may reduce deposition of body fat. In addition, dietary supplementation with natural palm oil containing palmitic acid at different positions in meat producing animals may lead to the production of meat and meat products with lower saturated fats. An increase in fat content and a decrease in lean content in female pigs resulted in an increased body fat:lean ratio but gender had no effect on blood lipid parameters or insulin concentrations.</p

    Molecular Breeding of Transgenic Virus-Immune White Clover (\u3cem\u3eTrifolium Repens\u3c/em\u3e) Cultivars

    Get PDF
    White clover (T. repens L.) is a major component of improved pastures throughout the temperate world. It is, however, highly susceptible to virus infection. Alfalfa mosaic virus (AMV), clover yellow vein virus (CYVV) and white clover mosaic virus (WCMV) all contribute to a significant reduction in dry matter yield and persistence of white clover. Sources of natural resistance to AMV in white clover or sexually compatible species are not available. Pathogen-derived resistance strategies, such as the expression of viral coat protein in transgenic plants, thus provides opportunities for the development of virus immune transgenic white clover

    Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria

    Get PDF
    BACKGROUND: Aerobic anoxygenic photototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) a and are thought to be important players in carbon cycling in the ocean. METHODOLOGY/PRINCIPAL FINDINGS: Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. CONCLUSIONS/SIGNIFICANCE: Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria

    Genetic correlations between wool traits and carcass traits in Merino sheep

    Get PDF
    Genetic correlations between 29 wool production and quality traits and 14 whole carcass measures and carcass component traits were estimated from the Information Nucleus of 8 flocks managed across a range of Australian sheep production environments and genetically linked. Wool data were from over 5,000 Merino progeny born over 5 yr, whereas carcass data were from over 1,200 wether progeny of over 176 sires, slaughtered at about 21 kg carcass weight, on average. Wool traits included yearling and adult records for wool weight, fiber diameter, fiber diameter variation, staple strength, scoured color, and visual scores for breech and body wrinkle. Whole carcass measures included HCW, dressing percentage (DP), and various measures of fat depth and eye muscle dimensions. Carcass components were obtained by dissection, and lean meat yield (LMY) was predicted. Heritability estimates for whole carcass measures ranged from 0.12 ± 0.08 to 0.35 ± 0.10 and ranged from 0.17 ± 0.10 to 0.46 ± 0.10 for carcass dissection traits, with no evidence of important genotype × environment interactions. Genetic correlations indicated that selection for increased clean wool weight will result in reduced carcass fat (−0.17 to −0.34) and DP (−0.48 ± 0.15), with little effect on carcass muscle. Selection for lower fiber diameter will reduce HCW (−0.48 ± 0.15) as well as carcass fat (0.14 to 0.27) and muscle (0.21 to 0.50). There were high genetic correlations between live animal measures of fat and muscle depth and the carcass traits (generally greater than 0.5 in size). Selection to increase HCW (and DP) will result in sheep with fewer wrinkles on the body (−0.57 ± 0.10) and barer breeches (−0.74 ± 0.12, favorable), with minor deterioration in scoured wool color (reduced brightness and increased yellowness). Selection for reduced fat will also result in sheep with fewer body wrinkles (−0.42 to −0.79). Increasing LMY in Merinos through selection would result in a large reduction in carcass fat and DP (−0.66 to −0.84), with a smaller increase in carcass muscle and some increase in wool weight and wrinkles. Although no major antagonisms are apparent between the wool and carcass traits, developing selection indexes for dual-purpose wool and meat breeding objectives will require accurate estimates of genetic parameters to ensure that unfavorable relationships are suitably considered. The findings will aid development of dual-purpose wool and meat breeding objectives

    Chemoattractant Receptor Homologous to the T Helper 2 Cell (CRTH2) Is Not Expressed in Human Amniocytes and Myocytes

    Get PDF
    BACKGROUND: 15-deoxy-Δ 12,14- Prostaglandin J2 (15dPGJ2) inhibits Nuclear factor kappa B (NF-κB) in human myocytes and amniocytes and delays inflammation induced preterm labour in the mouse. 15dPGJ2 is a ligand for the Chemoattractant Receptor Homologous to the T helper 2 cell (CRTH2), a G protein-coupled receptor, present on a subset of T helper 2 (Th2) cells, eosinophils and basophils. It is the second receptor for Prostaglandin D2, whose activation leads to chemotaxis and the production of Th2-type interleukins. The cellular distribution of CRTH2 in non-immune cells has not been extensively researched, and its identification at the protein level has been limited by the lack of specific antibodies. In this study we explored the possibility that CRTH2 plays a role in 15dPGJ2-mediated inhibition of NF-κB and would therefore represent a novel small molecule therapeutic target for the prevention of inflammation induced preterm labour. METHODS: The effect of a small molecule CRTH2 agonist on NF-κB activity in human cultured amniocytes and myocytes was assessed by detection of p65 and phospho-p65 by immunoblot. Endogenous CRTH2 expression in amniocytes, myocytes and peripheral blood mononuclear cells (PBMCs) was examined by PCR, western analysis and flow cytometry, with amniocytes and myocytes transfected with CRTH2 acting as a positive control in flow cytometry studies. RESULTS: The CRTH2 agonist had no effect on NF-κB activity in amniocytes and myocytes. Although CRTH2 mRNA was detected in amniocytes and myocytes, CRTH2 was not detectable at the protein level, as demonstrated by western analysis and flow cytometry. 15dPGJ2 inhibited phospho-65 in PBMC'S, however the CRTH2 antagonist was not able to attenuate this effect. In conclusion, CRTH2 is not expressed on human amniocytes or myocytes and plays no role in the mechanism of 15dPGJ2-mediated inhibition of NF-κB
    corecore