638 research outputs found

    Absence of a Direct Superfluid to Mott Insulator Transition in Disordered Bose Systems

    Get PDF
    We prove the absence of a direct quantum phase transition between a superfluid and a Mott insulator in a bosonic system with generic, bounded disorder. We also prove compressibility of the system on the superfluid--insulator critical line and in its neighborhood. These conclusions follow from a general {\it theorem of inclusions} which states that for any transition in a disordered system one can always find rare regions of the competing phase on either side of the transition line. Quantum Monte Carlo simulations for the disordered Bose-Hubbard model show an even stronger result, important for the nature of the Mott insulator to Bose glass phase transition: The critical disorder bound, Δc\Delta_c, corresponding to the onset of disorder-induced superfluidity, satisfies the relation Δc>Eg/2\Delta_c > E_{\rm g/2}, with Eg/2E_{\rm g/2} the half-width of the Mott gap in the pure system.Comment: 4 pages, 3 figures; replaced with resubmitted versio

    Criticality in Trapped Atomic Systems

    Get PDF
    We discuss generic limits posed by the trap in atomic systems on the accurate determination of critical parameters for second-order phase transitions, from which we deduce optimal protocols to extract them. We show that under current experimental conditions the in-situ density profiles are barely suitable for an accurate study of critical points in the strongly correlated regime. Contrary to recent claims, the proper analysis of time-of-fight images yields critical parameters accurately.Comment: 4 pages, 3 figures; added reference

    Comment on "Direct Mapping of the Finite Temperature Phase Diagram of Strongly Correlated Quantum Models" by Q. Zhou, Y. Kato, N. Kawashima, and N. Trivedi, Phys. Rev. Lett. 103, 085701 (2009)

    Full text link
    In their Letter, Zhou, Kato, Kawashima, and Trivedi claim that finite-temperature critical points of strongly correlated quantum models emulated by optical lattice experiments can generically be deduced from kinks in the derivative of the density profile of atoms in the trap with respect to the external potential, κ=−dn(r)/dV(r)\kappa = -dn(r)/dV(r). In this comment we demonstrate that the authors failed to achieve their goal: to show that under realistic experimental conditions critical densities nc(T,U)n_c(T,U) can be extracted from density profiles with controllable accuracy.Comment: 1 page, 1 figur

    The Higgs mode in a two-dimensional superfluid

    Full text link
    We present solid evidence for the existence of a well-defined Higgs amplitude mode in two-dimensional relativistic field theories based on analytically continued results from quantum Monte Carlo simulations of the Bose-Hubbard model in the vicinity of the superfluid-Mott insulator quantum critical point, featuring emergent particle-hole symmetry and Lorentz-invariance. The Higgs boson, seen as a well-defined low-frequency resonance in the spectral density, is quickly pushed to high energies in the superfluid phase and disappears by merging with the broad secondary peak at the characteristic interaction scale. Simulations of a trapped system of ultra-cold 87^{87}Rb atoms demonstrate that the low-frequency resonance feature is lost for typical experimental parameters, while the characteristic frequency for the onset of strong response is preserved.Comment: 9 pages, 13 figures; replaced with published versio

    Superfluid-insulator transition in strongly disordered one-dimensional systems

    Get PDF
    We present an asymptotically exact renormalization-group theory of the superfluid-insulator transition in one-dimensional (1D) disordered systems, with emphasis on an accurate description of the interplay between the Giamarchi-Schulz (instanton-anti-instanton) and weak-link (scratched-XY) criticalities. Combining the theory with extensive quantum Monte Carlo simulations allows us to shed new light on the ground-state phase diagram of the 1D disordered Bose-Hubbard model at unit filling

    Quantum Monte Carlo simulation in the canonical ensemble at finite temperature

    Full text link
    A quantum Monte Carlo method with non-local update scheme is presented. The method is based on a path-integral decomposition and a worm operator which is local in imaginary time. It generates states with a fixed number of particles and respects other exact symmetries. Observables like the equal-time Green's function can be evaluated in an efficient way. To demonstrate the versatility of the method, results for the one-dimensional Bose-Hubbard model and a nuclear pairing model are presented. Within the context of the Bose-Hubbard model the efficiency of the algorithm is discussed.Comment: 11 pages, 8 figure

    Finite-temperature effects on the superfluid Bose-Einstein condensation of confined ultracold atoms in three-dimensional optical lattices

    Full text link
    We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the the on--site interaction in the BH model the robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature--interaction regimes

    The fate of vacancy-induced supersolidity in 4He

    Get PDF
    The supersolid state of matter, exhibiting non-dissipative flow in solids, has been elusive for thirty five years. The recent discovery of a non-classical moment of inertia in solid 4He by Kim and Chan provided the first experimental evidence, although the interpretation in terms of supersolidity of the ideal crystal phase remains subject to debate. Using quantum Monte Carlo methods we investigate the long-standing question of vacancy-induced superflow and find that vacancies in a 4He crystal phase separate instead of forming a supersolid. On the other hand, non-equilibrium vacancies relaxing on defects of poly-crystalline samples could provide an explanation for the experimental observations.Comment: 4 pages,4 figures. Replaced with published versio

    Phase diagram of the disordered Bose-Hubbard model

    Get PDF
    We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling, which has been controversial for many years. The theorem of inclusions, proven in Ref. [1], states that the Bose glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a {\it regular} gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly non-trivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.Comment: 9 pages, 5 figure
    • …
    corecore