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Abstract
Wepresent an asymptotically exact renormalization-group theory of the superfluid–insulator
transition in one-dimensional (1D) disordered systems, with emphasis on an accurate description of
the interplay between theGiamarchi–Schulz (instanton–anti-instanton) andweak-link (scratched-
XY) criticalities. Combining the theorywith extensive quantumMonteCarlo simulations allows us to
shed new light on the ground-state phase diagramof the 1Ddisordered Bose–Hubbardmodel at unit
filling.

1. Introduction

In 1960, Girardeau established that in one-dimension (1D) there is no qualitative difference between fermions
and bosons: spinless fermions can be exactlymapped onto hard-core bosons [1]. Two decades later, Haldane
demonstrated that the low-energy physics of 1D superfluids (SFs) is accurately captured by the Luttinger liquid
(LL)paradigm, playing the role akin to that of the Fermi liquid paradigm in higher dimensions [2]. The universal
character of the LL description of 1D SFs becomes especially transparent after identifying the fermion-specific
notion of backscattering events with quantumphase slippages (or instantons), and, correspondingly, associating
the difference between the right- and left-moving fermions (in a systemwith periodic boundary conditions)
with thewinding number of the SF phase. In this way, the LL picture reduces to quantized hydrodynamics
augmentedwith phase slippages. At themacroscopic level, it is via the instanton–anti-instanton pairs that SF
hydrodynamics is coupled to either a commensurate external potential, or disorder, or both (see, e.g., [3, 4]). For
a LL in the infinite-size limit, the coupling renormalizes to zero in view of the absence of infinitely large (in the
sense of the ( )+1 1 -dimensionalmapping) instanton–anti-instanton pairs. On approach to the critical point of
a SF–insulator transition, large instanton–anti-instanton pairs become progressivelymore important until
infinitely large pairs dissociate, causing the transition.Within Popov’s ( )+1 1 -dimensional hydrodynamic
action over the phase field ( )tF x, , the instantons appear as vortices (with a specific x-dependent phase) such
that SF–insulator transitions are identical (in case of aMott transition in a pure, commensurate system) or very
close (in case of a SF-to-Bose-glass (BG) transition in a generic disordered system) to the Berezinskii–Kosterlitz–
Thouless (BKT) transition. In analogy to the universal Nelson–Kosterlitz relation at the BKTpoint, each type of
the instanton–anti-instanton dissociation transition is characterized by a universal critical valueKc of the
Luttinger liquid parameter p k= LK (withΛ the SF stiffness andκ the compressibility). For theMott
transition in a pure systemwith commensurate filling q/p (q and p are co-prime integers), this universal value is

=K p2c
2 [5]whereas for the SF–BG transition it is =K 3 2c [6]. Another well known and relevant

phenomenon that is perfectly understood from the renormalization group (RG) analysis is the Kane–Fisher
renormalization of a single weak link (or an impurity) [7]: below the universal value =K 1c

KF , a single arbitrarily

weak impurity gets renormalized to an infinitely high (in relative low-energy units) barrier; for >K Kc
KF, by

contrast, the link gets progressively healedwith increasing length scale and becomes asymptotically transparent.

OPEN ACCESS

RECEIVED

18 January 2016

REVISED

28March 2016

ACCEPTED FOR PUBLICATION

4April 2016

PUBLISHED

20April 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/4/045018
mailto:svistunov@physics.umass.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/4/045018&domain=pdf&date_stamp=2016-04-20
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/4/045018&domain=pdf&date_stamp=2016-04-20
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


A controlled theory of SF–BG transition in 1D, yielding, in particular, =K 3 2c , was first developed by
Giamarchi and Schulz (GS) using a perturbative RG treatment of disorder [6]. In the samework, the authors
conjectured that theremight exist an alternative strong-disorder scenario not captured by their theory.
Subsequently, some of us demonstrated [3] that theGS result is valid beyond the lowest-order RG equations and
is, in fact, a generic answer thanks to the above-mentioned asymptotically exactmechanism of instanton–anti-
instanton proliferation, which is tantamount to the arguments presented in the original papers byKosterlitz and
Thouless. A ‘strong-disorder’ alternative therefore seems unlikely. Nevertheless, Altman et al, inspired by the
1D-specific classical-fieldmechanismof destroying global SF stiffness by anomalously rare but anomalously
weak links, speculated that an alternative strong-disorder scenario does exist [8]. To corroborate their idea, the
authors employed a real-space RG treatment. It is important to realize, however, that the treatment of [8] is
essentially uncontrolled, abandoning the usual LL paradigm in favor of the ‘Coulomb blockade’ single-particle
nomenclature promoted tomacroscopic scales.

This, in turn, was countered by the theoremof critical self-averaging, which implies that the LL picture holds
at criticality [9]. In combinationwith theKane–Fisher result that a single weak link is an irrelevant perturbation
at >K 1, this seemed to leave no room for alternatives to theGS scenario because no other asymptotically exact
mechanisms for destruction of superfluidity were known.However, recently three of us have realized [10] that
previous studies have overlooked the difference in the outcome of theKane–Fisher renormalization forweak
links, which occurwithfinite probability per unit length, relative to the one for a single link in an infinite system.
The difference is in the classical-fieldmechanism of suppressing the SF stiffness byweak links (for a discussion,
see [9, 11]): in absolute units, the Kane–Fisher renormalization is always towardsmaking links weaker—and the
weaker the link, the stronger its effect onΛ. Despite the fact that at >K 1a single weak link cannot destroy
superfluidity, the combined effect of all anomalously weak links in suppressingΛmay be strong enough at large
system sizes to drive the system into an insulating state at >K 3 2c , when the generic instanton–anti-instanton
pair dissociationmechanism remains irrelevant. Note that long-wave hydrodynamic phonons are crucial for
this scenario towork—this is in sharp contrast with the real-space RG treatment of [8].

The newweak-link universality class is termed ‘scratched-XY criticality (sXY)’ because, under the standard
1D-quantum-to-2D-classicalmapping, it corresponds to the SF-normal phase transition in the 2D classical XY
model with correlated disorder in the formof parallel ‘scratches’ (Josephson barriers). At high enough disorder
strength, the sXY criticality preempts the BKT transition. The crucial quantity behind the sXY criticality is the
exponent ζ, characterizing the scalingµ z-N1 1 of theweakest link value found among the N L disorder
realizations in a systemoffixedmesoscopic size L. The exponent ζ is ofmicroscopic nature in the sense that it
does not involve theKane–Fisher renormalization of the links/scratches, nor the system size. (In the 2D classical
case, the analog of theKane–Fisher renormalization is the renormalization due to the thermalfluctuations of the
phasefield across the scratch.)Themost spectacularmanifestation of the special role played by ζ in sXY
criticality is the relation [10]

( )z=K 1 . 1.1c

Since the size of the link gets progressively larger for weaker links (if the barrier height is limited, its length
has to increase), the RG flow is formulated in the space of system sizes rather than distances.When doubling the
system size, L L2 , the renormalization of themacroscopic SF stiffness is due to one or a few anomalously
weak links. Also, links driving the flow at a given system size L are anomalously rare in the sense that these links
are statistically insignificant (i.e., absent in the vastmajority of realizations) for system sizesmuch smaller than L.

In the present work, we focus on solving two outstanding problems of the sXY criticality: (i) a qualitative and
quantitative understanding of the interplay between the sXY andGS scenarios in the vicinity of corresponding
tri-critical point on the SF–BGphase boundary and (ii) applying the theory to the disordered Bose–Hubbard
model

( ) ( ) ( ) ( )†å å å e m= - + + - + -
á ñ

H a a
U

n n nh.c.
2

1 . 1.2
ij

i j
i

i i
i

i i

Here ( )†a ai i is the boson creation (annihilation) operator for the site á¼ñi, denotes nearest-neighbor sites,
†=n a ai i i is the density operator, and ei is the randomon-site potential uniformly distributed on the interval

[ ]-D D, with no spatial correlation.Without loss of generality, the hopping amplitude is set equal to unity.We
confine ourselves to unit filling factor.

Given the exponential divergence of the correlation length on approach to the quantum critical point, brute-
force numerical and experimental approaches to reveal the thermodynamic limit properties are out of the
question. In the vicinity of the critical point, the system size L should be considered as another ‘parameter.’We
thus look for an asymptotically exact RG theory describing physics at large enough L, thereby allowing one to
analytically extrapolate numerical and experimental data to arbitrarily large L.
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Themutual effect of sXY andGS criticalities is described by threeflow equations. Our analysis of theflow
reveals an interesting fact that the competition is unequal: theGS (instanton–anti-instanton) contributions
remain subdominantwith respect to those of theweak links till the tri-critical point, i.e., physics of weak links
defines the shape of the SF–BGphase boundary in the vicinity of this point. The developed theory allows us to
interpret the results of our extensive quantumMonteCarlo simulations of themodel (1.2) by fitting thefinite-
size data with theflow equations. An integral part of the numeric analysis is extracting the exponent ζ from
statistically rare disorder realizations in samples ofmoderate sizes.Wefind that the part of the SF–BGphase
boundary controlled by the sXY universality class is rather significant—comparable in size to the part described
by theGiamarchi–Schulz scenario.

The paper is organized as follows. In section 2, we render the theory leading to the set of threeflow equations.
In section 3, we review basic results for the sXYuniversality class. In section 4, we analyze the interplay between
sXY andGS criticalities. In section 5, we apply the theory to themodel (1.2) at unitfilling.

2. Asymptotically exact theory of SF–insulator transition

2.1.Weakest links
Even in a classical-field 1D system at zero temperature, weak links can drive a phase transition from a SF to a
peculiar state with zeromacroscopic SF stiffness [11]. Such links are anomalously rare but anomalouslyweak.
Theories addressing such links typically assume a strong power-law distribution for a typical weakest link in a
systemof length L as

( )( ) µ
z-

J
L

1
, 2.1L

0 1

where ( )J L
0 can be thought of as a Josephson coupling over theweak link, and ζ is a well-defined, irrenormalizable

microscopic property of the disorderedmodel. Equation (2.1) can be justifiedmicroscopically in a number of
situations [11], and, in particular, for the classical-field counterpart of themodel (1.2).

We postulate that (2.1) is valid for our quantum case. Specifically, the building blocks of the RG theory are
patches of LL separated by sharply definedweak links, the nature of the latter being qualitatively similar toweak
links in the classical-field system. By ‘sharp’wemean the absence of logarithmic corrections to the power law
distribution, irrespective of weak-link properties (e.g., such as its size). Under these assumptions, the above-
mentioned classical-field phase transition [11] happens at z = 0.Wewill verify in section 5 that (2.1) indeed
holds numerically in all relevant regimes of the Bose–Hubbardmodel.

While it is difficult to rigorously derive (2.1) for themodel (1.2), we can still arguewhy one should expect this
law (the so called exponentially rare–exponentially weak consideration). Introduce the typical length, ( )r L , of the
weakest link in the systemof size L. In themodel (1.2) and similar systems, theweakest link is nothing but a rare
disorder realization such thatwithin the length ( )r L wehave amesoscopic piece of an insulating state.With
respect to its local SF environment, this piece behaves as a Josephson junction

( )( ) ( )µ -J e , 2.2L c r
0

L
2

with a certainwell-defined (in the limit of ( )  ¥r L and  ¥L ) parameter >c 02 .
Note that ( )r L in (2.2) is a sharply defined quantity since its absolute uncertainty, of the order of some

microscopic length, significantly changes the value of ( )J L
0 .With this fact inmind, wewrite the condition for the

link in question to happenwith a probability of order one as

( )( ) ~-L e const. 2.3c r L
1

The exponential factor, with a certain parameter >c 01 , is justified by the natural requirement that the disorder
correlation radius ismuch smaller than ( )r L . The factor L takes into account the number of independent
realizations (translations) of the rare region. From (2.3)wehave ( ) ( )( ) = +r c L1 ln 1L

1 . Substituting this into
(2.2) yields (2.1), with z = - c c1 2 1.

2.2. Kane–Fisher renormalization of theweakest links
TheKane–Fisher renormalization of weak links by hydrodynamic phonons can be studied by evoking Popov’s
hydrodynamic action over the phase field ( )tF x, whenmapping the quantumproblemonto a
( )+1 1 -dimensional classical system

[ ] ( ) ( ) ( ) ( )ò t
k

F = ¶ F +
L

¶ F + ¶ Ft t
⎡
⎣⎢

⎤
⎦⎥S x n xd d i

2 2
, 2.4x0

2 2

where n0 is the expectation value of the local density, which has a spatial dependence originating from the
external potential and disorder. Thefirst term is of topological nature and the only non-zero contribution comes
from instanton–anti-instanton pairs (vortex–anti-vortex pairs in phase field ( )tF x, ). It is through this term

3
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that the external potential and disorder get coupledwith instanton–anti-instanton pairs, which in turn
renormalize the SF stiffness [3].

The coupling across a link of strength J0 is described by the term

[ ( ) ( )] ( )ò t t tF - F+ -J d cos , 2.50

added to Popov’s hydrodynamic actionwith F being the phasefield just before and after the link. The link is
consideredweak if the condition

( )l kJ 1 2.60 0

ismet at themicroscopic cutoff scale l0. Under this condition, the term (2.5) is perturbative with respect to the
rest of the hydrodynamic action consisting of two independent parts separated by the link. The shortest way to
derive (2.6) is to consider two systems ofmicroscopic size l~ 0 connected by the link J0 atT=0. The link is
perturbative if the number of particles in each of the two systems is a good quantumnumber despite the presence
of the link. Speaking in the ‘Coulomb-blockade’ language, this requires that J0 bemuch smaller than the charging
energy. Recalling that the latter is ( )kl~1 0 , we get (2.6).

For aweak link, Kane and Fisher demonstrated that one can integrate out short wavelength phonons
perturbatively. A remark is in order here concerning a potential danger of the condition ( )  lr L

0 taking place
for rareweak links. In the perturbative renormalization, the fields F+ and F- in (2.5) are considered as
independent and the spatial distance between themhas no effect on thefinal result.

TheKane–Fisherflow equation for the renormalized strength of aweak link reads (wedo not rescale distance
for later convenience)

( )
( )

( ) ( )l
l l

l= -
J

K
J

d

dln

1
. 2.7

The critical condition =K 1c
KF for the physics of a single weak linkwithfixedmicroscopic strength in an

otherwise homogenous LL follows then directly from the scaling dimension of J: for <K 1 the link cuts the
system into halves ( ( )l lk J 0, see (2.6)), whereas the link ultimately becomes strong [ ( ) ]l lk ~J 1 for

>K 1. Since in a generic disordered system themicroscopic strength of the typical weakest link is also changing
under the RG flow, it is instructive to consider how theKane–Fisher renormalizationworks in the SF phase at
intermediate length scales rather than just taking the thermodynamic limit. For the sXY-criticality to occur, the
critical LL parametermust be K 3 2c , meaning thatwhile the absolute strength of the link, ( )lJ , decreases
under the RG flow, its relative strength lkJ increases. Hence, the renormalization of J inevitably stops at the
clutch scale *l given by

( ) ( )* *l l k ~J 1, 2.8

where perturbation theory is no longer valid. Therefore, upon completing theKane–Fisher renormalization at
the clutch scale *l , the link (2.1)picks up a certain renormalization factor ( )*lf .With the help of the integral
formof (2.7), this factor can be expressed as

ℓ
ℓ

ℓ( )
( )

( ) ( )*
*òl l l= - =

l⎡
⎣⎢

⎤
⎦⎥f

K
exp

d
, ln . 2.9

0

ln

0

The clutch condition (2.8) yields the following relation between *l and themicroscopic strength of theweak
link (below ( )ºJ J L

0 0 )

( ) ( )* *l l k ~J f 1. 2.100

Finally, the renormalization of the SF stiffness by theweakest link, ( )* *l=J J f0 , in a systemof size~L obeys
theflow equation

ℓ ( )
( )

* *

*
l

k
lL

~ ~ ~
-

J L J f L L

d

d

1 1
. 2.11

1

0

To avoid potential problemswith the tail of the distribution of (abnormally)weak links, we understand ℓ( )L-1

as themedian value for different disorder realizations at a given system size. The theoremof critical self-
averaging [9] allows us to deal with themedian value rather than thewhole distribution.

Sinceκ does notflowwithℓ, we readily rewrite (2.11) as theflow equation forK

ℓ
( )= -

K
wK

d

d
, 2.123

where

ℓ ℓ( ) ( ) ( )ℓ ℓ
* * **l l l l~ º = =-w L Le , ln , ln . 2.130 0
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Alongwith ℓ( )K , the function ℓ( )w (characterizing the role of weak links at a givenℓ) plays a central role in the
flow equations. The controllability of the RG theory requires that ℓ ℓ ℓ( ) ( )K Kd d (i.e., ℓ( )K flows slowly
along the scales of distance), which translates into

ℓ ℓ( ) ( ) ( )w K 1. 2.142

Belowwewill see that this requirement is consistent with the flow equations since the latter guarantee
ℓ( )ℓ =¥wlim 0 in the SF phase, including the critical point.

To obtain theflow equation for ℓ( )w , we substitute J0 of (2.1) into (2.10),

( ) ( )*
*

l
l =

z-L
f const. 2.15

1

Taking the logarithmon both sides and differentiatingwith respect toℓ using (2.9) results in

ℓ ℓ
ℓ ℓ
( )

( )
( )*

*

z
=

-
- -K

d

d

1

1
. 2.16

1

Differentiating the definition (2.13)with respect toℓ and using (2.16), we get

ℓ
ℓ

ℓ
( )

( )
( )*

*

z
=

-
-

w K

K
w

d

d

1

1
. 2.17

Up to higher-order corrections, we can replace ℓ( )*K with ℓ( )K in the rhs of (2.17). Indeed, Taylor
expanding ℓ( )*K with (2.12) and (2.13) taken into account, we have

ℓ ℓ ℓ ℓ ℓ ℓ ℓ( ) ( ) ( )( ) ( ) ( ) ( )* *= + - +¼ = + +¼-K K wK K K w wln , 2.183 3 1

so that,whenwriting ℓ ℓ( ) ( )z= +-K x1 , the rhs of (2.17) becomes

ℓ
ℓ

ℓ ℓ
ℓ ℓ

( )
( )

[ ( ) ( ) ]
( ) ( )

( )*

*

z z-
-

= -
+ + ¼

+ - + ¼

-

-

K

K
w

x K w w

K K w w
w

1

1

ln

ln 1
. 2.19

3 1

3 1

Replacing ℓ( )*K with ℓ( )K is legitimate if ℓ ℓ( ) ( )-K w w xln3 1 . For large enoughℓ, this condition is always
satisfied. Aswewill see later (from (3.16)), even in theworst case scenario, i.e. at the critical point when the
asymptotic flowofK is the strongest and ℓ( ) x 0, we have

ℓ
ℓ

ℓ
ℓ( ) ( )

z z z
µ ~-K w w xln

1
ln

1
. 2.203 1

2 2 2

Finally, we consider the renormalization ofK by instanton–anti-instanton pairs (for details see, e.g., [3]).
This brings us to three coupledRG equations

ℓ
( ) ( )= -

y
K y a

d

d
3 2 , 2.21

ℓ
( )= - -

K
K y K w b

d

d
, 2.212 2 3

ℓ
( )z

=
-
-

w K

K
w c

d

d

1

1
. 2.21

Equation (2.21a) is the standardKosterlitz–Thouless equation for theflowof the vortex fugacity y, except that
the coefficient in front of y is ( )- K3 2 instead of ( )- K2 . This is because in the ( )+1 1 D representation of
the 1Ddisordered systemonly vertical vortex–anti-vortex pairs contribute to the renormalization of the SF
density [3]. Equation (2.21b) describes the renormalization of the LL parameter by the instanton–anti-instanton
term y2 and by theweak-link termw. Finally, equation (2.21c) is the same as (2.17), with the above-discussed
replacement ℓ ℓ( ) ( )* K K .

Once the RG flowhits the point ( ) { }z= -K L max 3 2, 1 , it quickly flows to an insulating state, ( )¥ =K 0.
We thus identify two different universality classes: (i) theGS universality class with the universal critical value of
the LL parameter =K 3 2c and (ii) the sXYuniversality class, where the critical LL parameter is semi-
universal, z= -Kc

1.

3. Physics in theweak-link regime

In this section, we study the critical behavior in theweak-link regimewhere the phase transition to the insulating
phase is driven by theweakest links, whereas proliferation of instanton–anti-instanton paris remains irrelevant.
Explicit solutions to the flow equations are obtained to demonstrate the BKT-like nature of the criticality.
Equation (2.11) takes into account only the contributions ofmicroscopicweakest links.We justify this crucial
assumption by showing that the contribution of compositeweak links is always subdominant.

5
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3.1. Criticality driven by theweakest links
Wedefine theweak-link regime by the requirement z < 2 3 so that the criticality is due to theweakest links. To
study this critical behavior, we neglect the instanton–anti-instanton pair term y2 in (2.21b), and the relevant RG
equations simplify to

ℓ
( )= -

K
K w a

d

d
, 3.13

ℓ ( )
( )z

z
=

-
-

w K

K
w b

d

d

1

1
. 3.1

Thefirst integral is found by dividing (3.1b) by (3.1a),

( )
( )z

=
-

-
w

K

K K
Kd

1

1
d , 3.2

3

and then integrating both sides of the equation.We get

( ) ( )z= -w A f K, , 3.3

whereA is an integration constant depending on themicroscopic parameters and

( ) ( ) ( )z
z

z= +
-

+ -
-

f K
K K

K

K
,

1

2

1
1 ln

1
. 3.4

2

Since on approach to the critical point from the SF phase ℓ( )= ¥ =w 0, the integration constantA satisfies

ℓ( ( )) ( )z= = ¥A f K, 3.5

in the SF phase and at the critical point. In ourmodel (1.2), ( )= DA A U , . Let us follow the parameterA along a
line segment in the plane ( )DU , . Parameterizing the segment as ( ) ( )= D = DU U t t, , with a certain
parameter t, and assuming that the segment crosses the SF–BG critical line at the point ( )DU ,c c , in the vicinity of
the point ( ) ( ( ) ( ))D º DU U t t, ,c c c c wehave

( ) ( ) ( ) ( )» + -A t A t A t t . 3.6c 1 c

Similarly, following ζ on the same line segmentwe have

( ) ( ) ( ) ( )z z» + -t t A t t . 3.7c 2 c

HereA1 andA2 are certain constants and tc is the critical value of t.Without loss of generality, we assume <t tc

in the SF phase. Substituting (3.6) and (3.7) into (3.5) and keeping only the leading terms, we get

( ) ( ) ( )z- µ -¥
-K t t t t . 3.81

c c

Hence, the LL parameter in the sXYuniversality class demonstrates the same square-root cusp as in the
conventional BKT case. The analogywith BKT transition can be traced further by investigating the linearized
flow equations near the critical point:

ℓ
˜ ˜ ˜ ( )= -

w
xw a

d

d
2 , 3.9

ℓ
˜ ˜ ( )= -
x

w b
d

d
. 3.9

Herewefirst introduce ℓ( )x such that ℓ ℓ( ) ( )z= +-K xc
1 with ζc denoting ζ(tc), and then rescale x andw:

ℓ
ℓ

˜( )
( )

( )
( )

z

z
=

-
x

x

2 1
, 3.10c

2

c

ℓ ℓ˜ ( ) ( )
( )

( )
z z

=
-

w
w

2 1
. 3.11

c c

Thefirst integral of the system (3.9a) and (3.9b) is readily found:

ℓ ℓ˜ ( ) ˜ ( ) ˜ ( )= -w x A . 3.122

Here Ã is an integration constant. By definition, Ã vanishes at the critical point. The constant Ã is an analytic
function ofmicroscopic parameters because (3.12) is valid for finiteℓwhere both ℓ˜( )x and ℓ˜ ( )w cannot have
singularities. This enables us to expand Ã as

˜ ( ) ( )» -A B t t , 3.13c

with a positive constantB.
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The formof the complete solutions depends on the sign of Ã. For the SF side ( ˜ >A 0), we have

ℓ
ℓ ℓ

ℓ
ℓ ℓ

( )
( ) ˜

[ ˜ ( )]
( )

( ) ˜

[ ˜ ( )]
( )

z
z

z z
=

-

-
=

-

-
x

A

A
w

A

A

2 1

tanh
,

2 1

sinh
. 3.14c

c
2

0

c c

2
0

For the insulator side ( ˜ <A 0), the solution is

ℓ
ℓ ℓ

ℓ
ℓ ℓ

( )
( ) ∣ ˜ ∣

[ ∣ ˜ ∣ ( )]
( )

( ) ∣ ˜ ∣

[ ∣ ˜ ∣ ( )]
( )

z
z

z z
=

-

-
=

-

-
x

A

A
w

A

A

2 1

tan
,

2 1

sin
. 3.15c

c
2

0

c c

2
0

At the critical point, we have

ℓ
ℓ ℓ

ℓ
ℓ ℓ

( )
( )

( )
( )
( )

( )
z

z
z z

=
-

-
=

-
-

x w
2 1 1

,
2 1

. 3.16c

c
2

0

c c

0
2

The second integration constantℓ0 has the trivialmeaning of the logarithmof the length unit. The correlation
length ξ hence diverges near the critical point in the same characteristic way as in the conventional BKT

case: ∣ ˜ ∣ ∣ ∣x ~ ~ -A t tln 1 1 c .

3.2. Irrelevance of composite weak links
Tomake sure that the theory of the sXY universality class is fully consistent, it is important to demonstrate that
compositeweak links play only a subdominant role (in contrast to the assumptions of [8]) and thus can safely be
ignored in the RG analysis. Consider the simplest composite weak link—to be referred as a d-pair for brevity—
formed by twomicroscopic weak links (of comparablemicroscopic strength J0) separated by a distance dmuch
larger than themicroscopic scale butmuch smaller than the clutch scale for any of the two links. Up to the length
scale l ~ d, the Kane–Fisher renormalization of the two links takes place independently and reduces to
multiplying each of the two J0ʼs by the factor

ℓ
ℓ

( )
( )

( )ò= -
⎡
⎣⎢

⎤
⎦⎥f d

K
exp

d
, 3.17

d

0

ln

Mathematically, themerger of two renormalized links of strength ( ) ( ) ( )~ ~J d J d J f d1 2 0 into one composite
link takes place upon integrating out the phase field between the two links. (Wenote in passing that, in the
renormalized theory, the phasefield between the links depends only on τ and not on x.)An explicit calculation
yields the following estimate for the effective strength of the composite link

( ) ( ) ( )( ) k~J J d J d d. 3.18d
comp 1 2

This estimate is physically transparent, and immediately follows from second-order perturbation theory by
considering the d-pair as a quantumdot in the ‘Coulomb blockade’ regime. Then, ( )J d1 and ( )J d2 are two
effective single-particle tunnelingmatrix elements and ( )kd1 is the charging energy of the dot. For length scales
l > d the Kane–Fisher renormalization of the composite link reduces tomultiplying (3.18) by the factor

ℓ
ℓ( )

( ) ( ) ( )ò l- =
l⎡

⎣⎢
⎤
⎦⎥K

f f dexp
d

. 3.19
dln

ln

Hence, for the renormalized strength of a d-pair we have

( ) ( ) ( ) ( ) ( )( ) l k l l= >J J f d f dd . 3.20d
comp 0

2

The clutch scale for the d-pair, ( )
*

l d , then follows from the condition ( )( ) ( )
*

l l ~J 1d d
comp (in unitsκ=1)

( ) ( ) ( )( ) ( )
* *l l ~J f d f d 1. 3.21d d

0
2

This is all we need to compare the contribution of d-pairs with the one of isolatedweak links.
For a given system size L and scale d, we only need to account for those d-pairs which occurwith a probability

of order one because pairs with higher density are absorbed into the renormalized value of ( )L Ls , whereas
unlikely pairs are accounted for at larger system sizes. This defines the characteristic J0 as a function of L and scale
d

[ ] ( ‐ ) ( )( ) =z-J d L d d1 for pairs within the scale . 3.220
1 1 2

For an explicit calculation, we confine ourselves to the critical point, which is themost dangerous regime for the
putative relevance of composite weak links. Here, with (3.16)wehave

( ) ( ) ( ) ( )( )l l l= z z- -f ln critical flow . 3.232 1
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Combining (3.21) and (3.22)with (3.23), we obtain

( ) ( ) ( )( )
( )

*
*l

l
~

z-⎡
⎣⎢

⎤
⎦⎥d

L
ln ln 1. 3.24d

d
2 2

1

Finally, replacing ( )
*

l d with L under the logarithm, we get (with logarithmic accuracy)

( )
( )
*l
l

~
d L

1

ln ln
, 3.25

d

2 2

and observe that the contribution of large d-pairs to the renormalization ofΛ is suppressed relative to (3.16) by a
factor of ( )- dln 2 .Most importantly, the integral over the pair scales [ ]ò dd ln —yielding the total renormaliza-
tion contribution of all relevant d-pairs—converges at the lower limit, wheremicroscopic pairs (and othermulti-
link complexes) are an integral part of the original exponentially rare exponentially weak distribution of single
links.

4. Interplay betweenweak-link andGiamarchi–Schulz scenarios

The next natural question to ask is how thewell-knownGS criticality based on proliferation of instanton–anti-
instanton pairs crosses over to theweak-link criticality. It turns out that weak links aremore aggressive and the
instanton–anti-instanton pairs can be neglected in the asymptotic flow at the tri-critical point. A direct
consequence of this fact is the continuousfirst-order derivative of the transition line at the tri-critical point.

4.1. RG equations for small deviations from the tri-critical point
To study the competition betweenweak links and instanton–anti-instanton pairs in the vicinity of the tri-critical
point, we rewrite identically ℓ ℓ( ) ( ) z d= + = +K x3 2 , 2 3 , and consider >x 0 and δ as small
parameters to simplify the RG equations. The tri-critical point is fixed by d = 0with positive/negative δ
corresponding to theGS/sXY criticality, respectively. Expanding (2.21a)–(2.21c) to leading order in x and δ
results in

ℓ
( )= -

y
xy a

d

d
, 4.1

ℓ
( )= - -

x
y w b

d

d
, 4.12

ℓ
( )d= - +⎜ ⎟⎛

⎝
⎞
⎠

w
x w c

d

d

4

3
3 . 4.1

Here functions y andw have been rescaled to eliminatemultiplicative constants. This is a set of three coupled,
first-order differential equations, implying that the solutionwill have three free constants. One of them,ℓ0, has
the samemeaning as in section 3 (see (3.14) and (3.15)). Assuming corresponding choice of length units, we set
ℓ = 00 fromnowon. The other two integration constants, denoted asC andD below, are related to the
microscopic parameters of the system and dictate the location of the SF–BG transition.

Extracting x from (4.1a) and plugging it into (4.1c) leaves uswith

ℓ ℓ
( )d+ =

w ydln

d
3

4

3

dln

d
. 4.2

Integrating both sides overℓ leads to afirst integral

( )ℓ= dy
C

w
1

e . 4.32
3 2

3 2 9 2

In theweak-link regime, and at the tri-critical point, where d 0, (4.3) implies y w;2 i.e., starting from some
mesoscopic length scale theweak-link termdominates over the instanton–anti-instanton pairs. The d3 in (4.1c)
results in a non-universal critical parameter >K 3 2c since otherwisew diverges. In theGS regime, the flow
starts with y w2 but ultimately crosses over to y w2 at some length scale ℓ̃ (see below) leading to a
universal critical LL parameter =K 3 2c and the familiar BKT critical behavior.

Dividing (4.1b) by (4.1c) andmaking use of (4.3), we have

( ) ( ) ( )ℓd+ = +d-x x C w w4 3 3 d e 1 d . 4.43 2 1 2 9 2

Integrating both sides fromℓ0 toℓ and utilizing the secondmean value theorem for definite integrals results in

( )ℓd+ = + +dh⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠x

w

C

w
D

9

4
e

3

2
, 4.5

2 3 2
9 2

where h< <0 1 andD is our last integration constant.
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Themeaning of the integration constantD is easily revealed by examining theweak-link critical linewhere
( ) z d¥ = = --K 3 2 9 4c

1 and ( ) d¥ = -x 9 4c up to leading order in δ. From (4.5) theweak-link critical
line corresponds to

( )=D 0. 4.6c

Since δ is amicroscopic parameter, one can use δ andD (controlling the location of the tri-critical point and the
transition line, respectively) to conveniently parameterize thewhole problem.

4.2. Giamarchi–Schulz regime and the parabolic crossover
In theGS regime the critical condition =K 2 3c translates into ( )¥ =x 0c .Moreover, theGS critical linewill
lie on the positive side of theD=0 line extended beyond the tri-critical point (see also below). However, as can
be seen from (4.3), the crossover length scale for the dominance of the vortex fugacity term satisfies the
condition ℓ̃ d> 1 , meaning that at small δ (i) the initial flowofK is due toweak links, and (ii) the critical line is
closely following theD=0 line. Indeed, substituting (4.3) into (4.5) gives

( )ℓ( )d+ = + +h d- -⎜ ⎟⎛
⎝

⎞
⎠x y

w
D

9

4
e

3

2
. 4.7

2
2 1

The condition for theGiamarchi–Schulz critical line is then just

( ) ( )d d= =D 9 4
81

16
, 4.8c

2 2

since the first and second terms on the rhs flow to zero.
For the 1Ddisordered Bose–Hubbardmodel, themicroscopic parameter ζ (and thus δ) and the integration

constantD are supposed to be analytic functions of themodel parametersU andΔ. Since (4.8) predicts that the
SF–BGboundary has a continuous first derivative across the tri-critical point in the ( )zD, -plane, the same
property holds in the ( )DU , -plane. By the same token the second derivative is discontinuous. Therefore, the
crossover is parabolic in the ( )DU , -plane.

5.Ground-state phase diagramof the 1Ddisordered Bose–Hubbardmodel

5.1. Protocol of extracting ζ
Our numerical procedure of extracting ζ is based onmeasuring small probabilities, ( )µ z-P J0

1 1 , of rare
realizations of disorder, when in a systemof (moderate) size L there is an anomalously weak link, J0, with the
clutch scalemuch larger than the system size: ( ) kJ L L 1. (Here ( ) ( )lº =J L J L , see section 2.)With open
boundary conditions such a linkwould cut the system into two essentially independent pieces.With twisted
boundary conditions it acts as a Josephson junction in a SF ring: the particle flux (persistent current) in the ring,
j, in response to a phase twist,j, is related to J(L) by

( ) ( ) ( )
j

j p=
¶
¶

= Lj
F

J L T Lsin 2 , 5.12

where F is the free energy. Thefirst equality in (5.1) is absolutely general and does not imply any extra condition.
A delicate aspect of the static thermodynamic response to the gauge phase in low-dimensional systems is the
necessity to address the contribution of supercurrent states (i.e., states with non-zero global winding numbers of
the phasefield around the ring) [12]. Supercurrent states can dramatically affect the second equality in (5.1) at
elevated temperature: in order to guarantee that their contribution is negligible, we need to consider
temperaturesmuch lower than the energy of the first supercurrent state,  p LT L2 2 .

With (5.1) one relates J(L) to the second derivative of Fwith respect toj atj = 0:

( ) ( )
j

=
¶
¶ j=

J L
F

. 5.2
2

2
0

Within theworldline representation (used in our numerical simulations by theworm algorithm), the rhs of (5.2)
is readily obtained by thewell-known Pollock–Ceperley formula [15]

∣ ( )
j

¶
¶

= á ñ
j

j
=

=
F

T M , 5.3
2

2
0

2
0

expressing the linear response as the variance of theworldline winding numberM at a given temperatureT
atj = 0.

Themeasured strength J(L) of the anomalouslyweak link is, of course, different from themicroscopic value
J0 due toKane–Fisher renormalization ( )l L K

0
1 . However, this renormalization does not depend on J0, and
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cannot affect the power-law exponent ζ. Hence

∣ ( ) ( )µ á ñ j=J T M L Tfor all weak links at given and . 5.40
2

0

Furthermore, for purposes of extracting ζ, (5.4) can be used even at an elevated temperature p> LT L2 when
the persistent current response (5.1) is dramatically renormalized (suppressed) by the supercurrent states [12].
Indeed, in view of the perturbative nature of theweak link response, bothKane–Fisher and supercurrent
renormalizations reduce to a certain factor ˜( )f L T, independent of J0. In terms of J0 and ˜( )f L T, , we then have

˜ ( ) ∣ ( )= á ñ j=J f L T T M, , 5.50
2

0

justifying (5.4).
If the concept of irrenormalizable weak links is correct, thenfinding theweakest link among the N 1

different disorder realizations in a systemof amoderate size L is equivalent to doing the same in amuch larger
single systemof size =L LN1 . This leads to an efficient protocol for determining ζ using the approach by varying
N (and L, to validate the concept). The three natural limitations on L andN are: (i) L has to be sufficiently large to
capture all the essentialmicroscopic physics of weak links; (ii)N should not be ‘astronomically’ large to ensure
that the size of the typical weakest link remainsmuch smaller than L. In practice, this condition is hard to violate
even for amoderate value of L=20; (iii)N should be large enough to ensure that the clutch scale of theweakest
link in a systemof size L exceeds L.

To extract ζ, we simulate [ ]=N L 10ei
i ( =i 1, 2, 3 ,...)different disorder realizations (here [ ]... stands for

the closest integer) and record the smallest weak link parameter Ji in a given simulation run; i.e., we use an
equidistantmesh for NLln to probe different length scales. To suppress statistical noise, the procedure is
repeated =R 20, 30, 40 times (depending on system size) and results frommultiple runs, ( )Ji

k ( =k R1, 2 ,..., ),
are used to determine the typical weak link value as an average over all runs, ( ) ( )= á ñJ N L Ji i

k
R. Its error bar

follows from the data dispersion, ( ) { [ ] ( )}( )d = á ñ -J N L J J N L Ri i
k

R i
2 2 . Finally, the data for ( )J NLln isfitted

to a linear dependence

( ) ( )z= - +J NLln 1 ln const, 5.6

to extract the power-law exponent ζ. A characteristic example of the ζ-analysis is shown infigure 1.We see that
the data is perfectly described by a linear dependence, leading to an accurate determination of ζ.Within three-σ
errormargins, the slope of the linear fit does not changewhen going from L=20 over L=30 to L=40. This
behavior is in perfect agreement with the notion of ζ as an irrenormalizablemicroscopic parameter in the SF
phase and in the critical region. In fact, figure 1 is representative of theworst-case scenario because according to
our RG analysis (see figure 3 below) the parameter set ( )= D =U 4.2, 3.8 belongs to the BGphase in close
vicinity of the critical point when L=40 is still smaller than the correlation length.

5.2. sXY critical line
In theweak-link regimewe can neglect the instanton–anti-instanton effects in the asymptotic flowof the SF
stiffness (i.e., the termproportional to y2 in (2.21b)) in the SF phase and the critical region, and analyze the data
using the simpler (3.3)with ( ( ))z= ¥A f K, and

Figure 1.Determining ζ for ( )= D =U 4.2, 3.8 using (5.6). The error bars for ζ denote one standard deviation (deduced by the
confidence level for a linearfit to all data points).
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( ( )) ( ) ( )z z= ¥ -w f K f K, , . 5.7

Since the ( )zf x, -function takes itsmaximumvalue at z=x 1 , see (3.4), and the value ofK can only decrease
with the scale of distance, we immediately conclude that, if at some scale we have ( ) z>K L 1 and
simultaneously ( ) ( ) ( ( )) z z z--w L f f K L, ,1 , then the fixed point of theflow corresponds to ( )¥ =w 0
and ( )  z¥K 1 , i.e. the phase is SF. Otherwise, theflow reaches a point where ( ) z¢ =K L 1 with ( )¢ >w L 0
and theflow continues to the BGphase.

TomeasureK(L), we extract the compressibility ( )k L and SF stiffness ( )L L from the particle number and
winding number statistics. In the grand canonical ensemble the probability offinding aworldline configuration
with a givenN orW number is given by discrete Gaussian distributions

( ) ( ) ( )( ¯ )µ µ k- L - -W M W Ne , e , 5.8M
LTM

N
N N TL2 22 2

where N̄ is the average particle number. From this, the SF stiffness can be obtained as

( )
( ) ( )

( )L =
-

-
⎡
⎣⎢

⎤
⎦⎥LT

W

W W
ln

0

1 1
, 5.9M

M M

1
2

and compressibility as

([ ¯ ])
([ ¯ ] ) ([ ¯ ] )

( )k =
+ -

-
⎡
⎣⎢

⎤
⎦⎥TL

W N

W N W N

1
ln

1 1
, 5.10N

N N

1
2

where [ ¯ ]N is the closest integer to N̄ .
The protocol of determining the critical point is as follows.Wefix the value ofU and start withmeasuring

the ( )z D dependence (all data points can be perfectlyfit to a linear dependence). Next, we compute ( )DK L,
values for a number of different system sizes andΔ-points. ( )DK L, is reported as themedian of the
distribution over several hundred (up to a thousand) disorder realizations. Finally, for each value ofΔ, we
employ (3.1a) and (3.1b) to extract thew(L)-function by fitting finite-size data to theflow equations. Depending
on the result, we then either derive the thermodynamic limit answer for ( )¥K from (5.7) or conclude that the
flow is to the BGphase. To improve our estimate of the critical disorder strength, given afinitemesh inΔ, we
interpolate ( )DK L, data between the points using linearfits and proceedwith theflow analysis as described
above; higher-order polynomialfits produce similar results within the error bars. The critical parameter ( )D Uc

is then found from the intersection of ( )¥ DK , and ( )z D-1 curves, see figure 2. Its error bar ismostly
determined by the uncertainty on the closest ζ and ( )¥K points.

5.3. Tri-critical point and theGiamarchi–Schulz criticality
The tri-critical point ( )* *DU , separating the sXY andGS universality classes can be found from the intersection
of the sXY critical and z = 2 3 lines. Two circumstances help us to locate it relatively accurately. On the one

Figure 2. Fine-size (see the legend) and extrapolated values (blue points and dashed line) of the LL parameterK for different disorder
strengths atU=2.5. The red dashed line (with the red diamonds) is the ( )z D-1 function obtained by linear regression of the data for
ζ . The SF–BG transition point is locatedwithin the gray area where the phase is ambiguous from thefitting the RGflowdue to
uncertainties of ( )z D and ( )DK L, .We estimate the critical disorder strength to be at ( ) ( )D =U 2.69 4c (themagenta point and half
of the horizontal width of the gray area); its error bar is relatively small thanks to the sharp square-root dependence of ( )¥ DK , .
Correspondingly, the critical LL parameter is estimated to be ( )¥ = K 1.72 0.15c (the yellow star and half of the vertical width of
the gray area).
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hand, from the analysis performed in section 4we conclude that the sXY critical line can be smoothly
interpolated all theway to the intersection point. On the other hand, the sXY critical point ( )D = =U 3.6 3.36C

(the black dot infigure 3) deduced by the protocol described in the previous section, landed on the z = 2 3 line
(located at ( ))= D =U 3.6, 3.38 within error bars. This basically eliminates the need for determining the tri-
critical point from the intersection of interpolated curves. The procedure predicts

( )* *=  D = U 3.40 0.23, 3.25 0.15. 5.11

The value forU* is remarkably close to the critical value for the SF toMott insulator transition in the absence of
disorder.

By knowing the slopes of the sXY critical and z = 2 3 lines in the ( )D U, -plane and the location of the tri-
critical point, we are in a position to relate the integration constantD and the small parameter δ, controlling the
shape of the phase diagram in the vicinity of ( )* *DU , , to theHamiltonian parameters. Using a linear expansion
about the d= =D 0, 0 point

( ) ( ) ( )* *= - - D - DD A U U A , 5.1211 12

( ) ( ) ( )* *d = - - D - DA U U A , 5.1321 22

and numerical data determining theD=0 and d = 0 curves, we find that

( )=  = A A A A0.55 0.11, 0.65 0.06. 5.1411 12 21 22

Next, the dependence of ( )¥K onΔ in the SF phase in theweak-link regime allows us to obtainA12.
Specifically, near the tri-critical point (4.5) implies

( ) ( ) ( )z¥ D - = DK D, 1 , 5.15

This analysis allows us to determine the derivative ofDwith respect toΔ and results in

( )= A 1.0 0.2. 5.1612

Similarly,A22 controls the slope of the ( )z D line atfixedU. From the data sets computed atU=3.0 and
U=3.6 and linearly extrapolated to the tri-critical point, wefind

( )= A 0.56 0.14. 5.1722

Weare all set tomake a quantitative prediction for the structure of the phase diagram in close vicinity of the
tri-critical point, including the location of theGS-line (the protocol of calculating theGS line away from the tri-
critical point is outlined below). The result is shown infigure 4where (5.12) and (5.13) are used to plot the

d= =D 0, 0, and ( )d=D 81 16 2 (see (4.8)) curves for sXY, z = 2 3, andGS lines, respectively. By observing
reasonable agreement between this prediction and an independent calculation of theGS-line relatively far from
the tri-critical point we validate the proposed theory.

Figure 3.Ground-state phase diagramof the 1Ddisordered Bose–Hubbardmodel at unitfilling factor. The sXY andGS critical lines
are shown in red and blue, respectively. The intersection of the interpolated z = 2 3 line (dashed green)with any of the other critical
lines determines the tri-critical point (black dot within the pink uncertainty region). The cyan line shows the gaps of theMott insulator
in the disorder-free system taken from [14], which signals the transition between theMott insulator and the BGphase in the presence
of disorder.We also show the ( )¥ =K 3 2 line obtained by the tree tensor network (TTN)method [13] (orange), which agreeswith
ourGS-linewithin the error bars. As expected, in theweak-link regime, the TTN line ends inside the BGphase.
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Deep in theGS regime, when theweak link termw in the RG equations can be neglected, we are back to the
standardXY-universality class analysis. From

ℓ
( ) ( )= -

y
K y a

d

d
3 2 , 5.18

ℓ
( )= -

K
y K b

d

d
, 5.182 2

we readily obtain thefirst integral as

( )+ = +K K y G2 ln 3 , 5.192

whereG is the integration constant. The thermodynamic state can be established by solving theRG flow just as
we did for theweak-link regime. In the SF phase, theflowhas afixed point at y=0 and ( ) ¥K 3 2.
Otherwise, if the finite-size system can reach a state with ( ) =K L 3 2 and >y 0, theflowwill continue towards
the BGphasewith ( )¥ =K 0. Numerically, we firstfit thefinite-size data to the RG flow to determineG and
then use the above-mentioned property of thefirst integral (5.19) to determine the phase. Technically, this
protocol is nearly identical to the one used in theweak-link regime andwe do not repeat it here. The resulting
GS-line is shown infigure 3.

6. Concluding remarks

The importance of our successful application of the sXY criticality theory to the SF–BG transition inmodel (1.2)
is two-fold. First, we have corroborated the analytic theory of the interplay between the two university classes
and the structure of the phase diagram in the vicinity of the tri-critical point. Second, we establish the qualitative
and quantitative behavior of the ground-state phase diagram (andfinite-size properties) of theHamiltonian
(1.2) at (standard formany studies) unitfilling. An integer filling, while being essential for having theMott
insulator phase, has no effect on the universality class of SF–BGphase transition.

The theory rests on a rather non-trivial postulate of the existence of an irrenormalizable power-law
distribution ofmicroscopic weak links.While being self-consistent—and, in this sense, rendering the theory
asymptotically exact—the postulate can hardly be proven as a theorem. Therefore, the data infigure 1
demonstrating excellent agreementwith the ζ-postulate is at least as important as the phase diagram shown in
figure 3.

The ground-state phase diagramof (1.2) in the ( )DU , plane features a characteristic line defined by the
condition ( )z D =U , 2 3. Strictly speaking, this line is well defined only in the SF phase and at the SF–BG
phase boundary. However, the exponential divergence of the correlation length on approach to the SF–BG
critical point guarantees that the z = 2 3 line remainsmeaningful even inside the BGphase (see figure 3); the
data presented infigure 1 further illustrate this point. On the z < 2 3 side from the z = 2 3 line, the sXY
criticality preempts theGS scenario. This, in particular,means that superfluidity with ( )  z< K L3 2 1 in
this part of the phase diagram is guaranteed to be afinite-size effect, since the  ¥L phase is BG.

Figure 4.The SF–BGphase diagram in the vicinity of the tri-critical point. Equations (5.12)–(5.14), (5.16), and (5.17)were used to plot
theD=0 (bold red and dashed red), d = 0 (dashed green), and ( )d=D 81 16 2 (bold blue) predictions for sXY, z = 2 3, andGS
lines, respectively.We also plot our numerical data for the same lines (same color scheme as infigure 3).
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At the intersection of the z = 2 3 linewith the SF–BGphase boundary, there is a tri-critical point separating
theGS and sXY criticalities. According to our analysis, the phase boundary remains smooth at the tri-critical
point but the curvature is discontinuous. For purely numeric reasons the angle between the z = 2 3 line and the
phase boundary happens to be rather small. As a result, despite accurately identifying the positions of both the
z = 2 3 line and the phase boundary, the uncertainty in the location of the tri-critical point remains relatively
large. Another consequence of the small angle intersection is that the critical value ofK on the sXY line is only
slightly higher than theGS value of 3/2.Under such circumstances, a brute-force observation of the violation of
theGS scenario in the vicinity of the tri-critical point becomes problematic (see [13]) even though our data in
figure 2 are not compatible withGS evenwhen donewith a brute force analysis.

Tracing the fate of the sXY line far away from the tri-critical point (in the region of smallU andΔ) requires a
substantial numerical effort and goes beyond the scope of this paper.
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