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Abstract

We present an asymptotically exact renormalization-group theory of the superfluid—insulator
transition in one-dimensional (1D) disordered systems, with emphasis on an accurate description of
the interplay between the Giamarchi-Schulz (instanton—anti-instanton) and weak-link (scratched-
XY) criticalities. Combining the theory with extensive quantum Monte Carlo simulations allows us to
shed new light on the ground-state phase diagram of the 1D disordered Bose—Hubbard model at unit
filling.

1. Introduction

In 1960, Girardeau established that in one-dimension (1D) there is no qualitative difference between fermions
and bosons: spinless fermions can be exactly mapped onto hard-core bosons [1]. Two decades later, Haldane
demonstrated that the low-energy physics of 1D superfluids (SFs) is accurately captured by the Luttinger liquid
(LL) paradigm, playing the role akin to that of the Fermi liquid paradigm in higher dimensions [2]. The universal
character of the LL description of 1D SFs becomes especially transparent after identifying the fermion-specific
notion of backscattering events with quantum phase slippages (or instantons), and, correspondingly, associating
the difference between the right- and left-moving fermions (in a system with periodic boundary conditions)
with the winding number of the SF phase. In this way, the LL picture reduces to quantized hydrodynamics
augmented with phase slippages. At the macroscopic level, it is via the instanton—anti-instanton pairs that SF
hydrodynamics is coupled to either a commensurate external potential, or disorder, or both (see, e.g., [3, 4]). For
aLLin the infinite-size limit, the coupling renormalizes to zero in view of the absence of infinitely large (in the
sense of the (1 4+ 1)-dimensional mapping) instanton—anti-instanton pairs. On approach to the critical point of
a SF—insulator transition, large instanton—anti-instanton pairs become progressively more important until
infinitely large pairs dissociate, causing the transition. Within Popov’s (1 + 1)-dimensional hydrodynamic
action over the phase field ® (x, 7), the instantons appear as vortices (with a specific x-dependent phase) such
that SF—insulator transitions are identical (in case of a Mott transition in a pure, commensurate system) or very
close (in case of a SF-to-Bose-glass (BG) transition in a generic disordered system) to the Berezinskii—Kosterlitz—
Thouless (BKT) transition. In analogy to the universal Nelson—Kosterlitz relation at the BKT point, each type of
the instanton—anti-instanton dissociation transition is characterized by a universal critical value K of the
Luttinger liquid parameter K = m+/Ax (with A the SF stiffness and x the compressibility). For the Mott
transition in a pure system with commensurate filling q/p (g and p are co-prime integers), this universal value is
K. = 2/p?[5] whereas for the SF-BG transition itis K. = 3/2 [6]. Another well known and relevant
phenomenon that is perfectly understood from the renormalization group (RG) analysis is the Kane—Fisher
renormalization of a single weak link (or an impurity) [7]: below the universal value KX* = 1,a single arbitrarily
weak impurity gets renormalized to an infinitely high (in relative low-energy units) barrier; for K > KX, by
contrast, the link gets progressively healed with increasing length scale and becomes asymptotically transparent.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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A controlled theory of SF-BG transition in 1D, yielding, in particular, K. = 3/2, was first developed by
Giamarchi and Schulz (GS) using a perturbative RG treatment of disorder [6]. In the same work, the authors
conjectured that there might exist an alternative strong-disorder scenario not captured by their theory.
Subsequently, some of us demonstrated [3] that the GS result is valid beyond the lowest-order RG equations and
is, in fact, a generic answer thanks to the above-mentioned asymptotically exact mechanism of instanton—anti-
instanton proliferation, which is tantamount to the arguments presented in the original papers by Kosterlitz and
Thouless. A ‘strong-disorder’ alternative therefore seems unlikely. Nevertheless, Altman et al, inspired by the
1D-specific classical-field mechanism of destroying global SF stiffness by anomalously rare but anomalously
weak links, speculated that an alternative strong-disorder scenario does exist [8]. To corroborate their idea, the
authors employed a real-space RG treatment. It is important to realize, however, that the treatment of [8] is
essentially uncontrolled, abandoning the usual LL paradigm in favor of the ‘Coulomb blockade’ single-particle
nomenclature promoted to macroscopic scales.

This, in turn, was countered by the theorem of critical self-averaging, which implies that the LL picture holds
at criticality [9]. In combination with the Kane—Fisher result that a single weak link is an irrelevant perturbation
at K > 1, this seemed to leave no room for alternatives to the GS scenario because no other asymptotically exact
mechanisms for destruction of superfluidity were known. However, recently three of us have realized [10] that
previous studies have overlooked the difference in the outcome of the Kane—Fisher renormalization for weak
links, which occur with finite probability per unit length, relative to the one for a single link in an infinite system.
The difference is in the classical-field mechanism of suppressing the SF stiffness by weak links (for a discussion,
see [9, 11]): in absolute units, the Kane—Fisher renormalization is always towards making links weaker—and the
weaker the link, the stronger its effect on A. Despite the fact thatat K > 1asingle weak link cannot destroy
superfluidity, the combined effect of all anomalously weak links in suppressing A may be strong enough at large
system sizes to drive the system into an insulating state at K. > 3/2, when the generic instanton—anti-instanton
pair dissociation mechanism remains irrelevant. Note that long-wave hydrodynamic phonons are crucial for
this scenario to work—this is in sharp contrast with the real-space RG treatment of [8].

The new weak-link universality class is termed ‘scratched-XY criticality (sXY)’ because, under the standard
1D-quantum-to-2D-classical mapping, it corresponds to the SF-normal phase transition in the 2D classical XY
model with correlated disorder in the form of parallel ‘scratches’ (Josephson barriers). At high enough disorder
strength, the sXY criticality preempts the BKT transition. The crucial quantity behind the sXY criticality is the
exponent ¢, characterizing the scaling oc1/N! ~¢ of the weakest link value found among the N >> L disorder
realizations in a system of fixed mesoscopic size L. The exponent (is of microscopic nature in the sense that it
does not involve the Kane—Fisher renormalization of the links/scratches, nor the system size. (In the 2D classical
case, the analog of the Kane—Fisher renormalization is the renormalization due to the thermal fluctuations of the
phase field across the scratch.) The most spectacular manifestation of the special role played by (in sXY
criticality is the relation [10]

K.=1/¢C. (1.1)

Since the size of the link gets progressively larger for weaker links (if the barrier height is limited, its length
has to increase), the RG flow is formulated in the space of system sizes rather than distances. When doubling the
system size, L — 2L, the renormalization of the macroscopic SF stiffness is due to one or a few anomalously
weak links. Also, links driving the flow at a given system size L are anomalously rare in the sense that these links
are statistically insignificant (i.e., absent in the vast majority of realizations) for system sizes much smaller than L.

In the present work, we focus on solving two outstanding problems of the sXY criticality: (i) a qualitative and
quantitative understanding of the interplay between the sXY and GS scenarios in the vicinity of corresponding
tri-critical point on the SF-BG phase boundary and (ii) applying the theory to the disordered Bose—Hubbard
model

H= —Z(afaj + h.c) + %Z”i(”i =1+ > (& — wn. (1.2)
B i ;

Here a;' (a; ) is the boson creation (annihilation) operator for thessite 7, {...) denotes nearest-neighbor sites,

n; = a a;is the density operator, and ; is the random on-site potential uniformly distributed on the interval
[—A, A]with no spatial correlation. Without loss of generality, the hopping amplitude is set equal to unity. We
confine ourselves to unit filling factor.

Given the exponential divergence of the correlation length on approach to the quantum critical point, brute-
force numerical and experimental approaches to reveal the thermodynamic limit properties are out of the
question. In the vicinity of the critical point, the system size L should be considered as another ‘parameter.’ We
thus look for an asymptotically exact RG theory describing physics at large enough L, thereby allowing one to
analytically extrapolate numerical and experimental data to arbitrarily large L.
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The mutual effect of sXY and GS criticalities is described by three flow equations. Our analysis of the flow
reveals an interesting fact that the competition is unequal: the GS (instanton—anti-instanton) contributions
remain subdominant with respect to those of the weak links till the tri-critical point, i.e., physics of weak links
defines the shape of the SF-BG phase boundary in the vicinity of this point. The developed theory allows us to
interpret the results of our extensive quantum Monte Carlo simulations of the model (1.2) by fitting the finite-
size data with the flow equations. An integral part of the numeric analysis is extracting the exponent { from
statistically rare disorder realizations in samples of moderate sizes. We find that the part of the SF-BG phase
boundary controlled by the sXY universality class is rather significant—comparable in size to the part described
by the Giamarchi—Schulz scenario.

The paper is organized as follows. In section 2, we render the theory leading to the set of three flow equations.
In section 3, we review basic results for the sXY universality class. In section 4, we analyze the interplay between
sXY and GS criticalities. In section 5, we apply the theory to the model (1.2) at unit filling.

2. Asymptotically exact theory of SF—insulator transition

2.1. Weakest links

Evenin a classical-field 1D system at zero temperature, weak links can drive a phase transition froma SFtoa
peculiar state with zero macroscopic SF stiffness [11]. Such links are anomalously rare but anomalously weak.
Theories addressing such links typically assume a strong power-law distribution for a typical weakest link in a
system of length L as

0 Lll-f’ 2.1)
where ](SL) can be thought of as a Josephson coupling over the weak link, and (is a well-defined, irrenormalizable
microscopic property of the disordered model. Equation (2.1) can be justified microscopically in a number of
situations [11], and, in particular, for the classical-field counterpart of the model (1.2).

We postulate that (2.1) is valid for our quantum case. Specifically, the building blocks of the RG theory are
patches of LL separated by sharply defined weak links, the nature of the latter being qualitatively similar to weak
links in the classical-field system. By ‘sharp’ we mean the absence of logarithmic corrections to the power law
distribution, irrespective of weak-link properties (e.g., such as its size). Under these assumptions, the above-
mentioned classical-field phase transition [11] happens at { = 0. We will verify in section 5 that (2.1) indeed
holds numerically in all relevant regimes of the Bose-Hubbard model.

While it is difficult to rigorously derive (2.1) for the model (1.2), we can still argue why one should expect this
law (the so called exponentially rare—exponentially weak consideration). Introduce the typical length, r™, of the
weakest link in the system of size L. In the model (1.2) and similar systems, the weakest link is nothing but arare
disorder realization such that within the length 72 we have a mesoscopic piece of an insulating state. With
respect to its local SF environment, this piece behaves as a Josephson junction

I oc emer®, (2.2)

with a certain well-defined (in the limit of ¥ — coand L — oc) parameter ¢, > 0.

Note that ) in (2.2) is a sharply defined quantity since its absolute uncertainty, of the order of some
microscopic length, significantly changes the value of J{*'. With this fact in mind, we write the condition for the
link in question to happen with a probability of order one as

e 9™ ~ const. 2.3
L (€L

The exponential factor, with a certain parameter ¢ > 0, isjustified by the natural requirement that the disorder
correlation radius is much smaller than r!). The factor L takes into account the number of independent
realizations (translations) of the rare region. From (2.3) we have r = (1/g)InL + O(1). Substituting this into
(2.2)yields (2.1),with¢ =1 — ¢/q.

2.2.Kane-Fisher renormalization of the weakest links

The Kane-Fisher renormalization of weak links by hydrodynamic phonons can be studied by evoking Popov’s
hydrodynamic action over the phase field ® (x, 7) when mapping the quantum problem onto a

(1 4+ 1)-dimensional classical system

S[®] = f dxdT[ino(x)aT® + %(axcb)z + 2(8@)2], (2.4)

where 11 is the expectation value of the local density, which has a spatial dependence originating from the
external potential and disorder. The first term is of topological nature and the only non-zero contribution comes
from instanton—anti-instanton pairs (vortex—anti-vortex pairs in phase field ® (x, 7)). Itis through this term
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that the external potential and disorder get coupled with instanton—anti-instanton pairs, which in turn
renormalize the SF stiffness [3].
The coupling across alink of strength J, is described by the term

T f dr cos[®.(r) — (7)), 2.5)

added to Popov’s hydrodynamic action with @, being the phase field just before and after the link. The link is
considered weak if the condition

]() )\0 R << 1 (26)

is met at the microscopic cutoff scale \y. Under this condition, the term (2.5) is perturbative with respect to the
rest of the hydrodynamic action consisting of two independent parts separated by the link. The shortest way to
derive (2.6) is to consider two systems of microscopic size ~ Ao connected by thelink Joat T = 0. Thelink is
perturbative if the number of particles in each of the two systems is a good quantum number despite the presence
of thelink. Speaking in the ‘Coulomb-blockade’ language, this requires that J be much smaller than the charging
energy. Recalling that the latter is ~1/(k\¢), we get (2.6).

For aweak link, Kane and Fisher demonstrated that one can integrate out short wavelength phonons
perturbatively. A remark is in order here concerning a potential danger of the condition r™ >> ), taking place
for rare weak links. In the perturbative renormalization, the fields ®, and ®_in (2.5) are considered as
independent and the spatial distance between them has no effect on the final result.

The Kane—Fisher flow equation for the renormalized strength of a weak link reads (we do not rescale distance
for later convenience)

T _ L0, @7)

dinA K\

The critical condition KXF = 1 for the physics of a single weak link with fixed microscopic strength in an
otherwise homogenous LL follows then directly from the scaling dimension of J: for K < 1 the link cuts the
system into halves (J (A\) Ak — 0, see (2.6)), whereas the link ultimately becomes strong [J (A) Ak ~ 1] for
K > 1. Since in a generic disordered system the microscopic strength of the typical weakest link is also changing
under the RG flow, it is instructive to consider how the Kane—Fisher renormalization works in the SF phase at
intermediate length scales rather than just taking the thermodynamic limit. For the sXY-criticality to occur, the
critical LL parameter mustbe K. > 3/2, meaning that while the absolute strength of the link, J ()), decreases
under the RG flow, its relative strength J\x increases. Hence, the renormalization of J inevitably stops at the
clutch scale Ay given by

J (A Ak ~ 1, (2.8)

where perturbation theory is no longer valid. Therefore, upon completing the Kane—Fisher renormalization at
the clutch scale Ay, the link (2.1) picks up a certain renormalization factor f (As). With the help of the integral
form of (2.7), this factor can be expressed as

In Ay
FOw = exp[— fo %], £ =In(\/\o). 2.9)

The clutch condition (2.8) yields the following relation between A4 and the microscopic strength of the weak
link (below Jo = J§P)

Jof ) At ~ 1. (2.10)
Finally, the renormalization of the SF stiffness by the weakest link, Jx = Jo f (A4), inasystem of size ~L obeys
the flow equation
dA! 1 1 ﬁ

VRS SRt @2.11)
dz L Jof (M) L L

To avoid potential problems with the tail of the distribution of (abnormally) weak links, we understand A~!(#)
as the median value for different disorder realizations at a given system size. The theorem of critical self-
averaging [9] allows us to deal with the median value rather than the whole distribution.

Since x does not flow with £, we readily rewrite (2.11) as the flow equation for K

dK _ —wK3, (2.12)
dz
where
W~ Ay/L =7 % = In(Ms/ M), ¢ =In(L/ ). (2.13)
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Along with K (¢), the function w (£) (characterizing the role of weak links at a given £) plays a central role in the
flow equations. The controllability of the RG theory requires that dK () /dZ < K (¢) (i.e., K (¢) flows slowly
along the scales of distance), which translates into

w()K?*(£) < 1. (2.14)

Below we will see that this requirement is consistent with the flow equations since the latter guarantee
limg_, w(Z) = 0inthe SF phase, including the critical point.
To obtain the flow equation for w (£), we substitute J, of (2.1) into (2.10),

Ax
e f (Ay) = const. (2.15)
Taking the logarithm on both sides and differentiating with respect to £ using (2.9) results in
da@) __1-¢ (2.16)
dz 1 — K (%)
Differentiating the definition (2.13) with respect to # and using (2.16), we get
dw _1- K& 2.17)
dz K(4) — 1
Up to higher-order corrections, we can replace K (Z) with K (£) in the rhs of (2.17). Indeed, Taylor
expanding K (¢) with (2.12) and (2.13) taken into account, we have
K) =K@ +wK3 )& — &) +... = K& +K@whw ! +.., (2.18)
so that,when writing K (¢) = (~! + x(¢), the rhs of (2.17) becomes
_ 3 -1
1 — (K (&%) W (x@)+ K@whnhw 1+ ..] W 2.19)
K() — 1 K@ +K@whw'! -1+ ..

Replacing K (%) with K (£) is legitimate if K> (£)w Inw™! < x (). For large enough ¢, this condition is always
satisfied. As we will see later (from (3.16)), even in the worst case scenario, i.e. at the critical point when the
asymptotic flow of K is the strongest and x (£) — 0, we have
1 4 1
Il —In— < — ~ x(?). 2.20
G < O (2220)

Finally, we consider the renormalization of K by instanton—anti-instanton pairs (for details see, e.g., [3]).
This brings us to three coupled RG equations

dy

K3wlnw~

Y _ 372 - K)y, 221
17 @3/ )y (2.21a)
dK

— = —K*»? K3 S 2.21b
a7 y w ( )
dw _1-K 2.210)
¢ K-1

Equation (2.21a) is the standard Kosterlitz—Thouless equation for the flow of the vortex fugacity y, except that
the coefficient in frontof yis (3/2 — K) instead of (2 — K). Thisis because in the (1 + 1)D representation of
the 1D disordered system only vertical vortex—anti-vortex pairs contribute to the renormalization of the SF
density [3]. Equation (2.21b) describes the renormalization of the LL parameter by the instanton—anti-instanton
term y* and by the weak-link term w. Finally, equation (2.21¢) is the same as (2.17), with the above-discussed
replacement K (&) — K (£).

Once the RG flow hits the point K (L) = max {3/2, (™'}, it quickly flows to an insulating state, K (c0) = 0.
We thus identify two different universality classes: (i) the GS universality class with the universal critical value of
the LL parameter K. = 3/2 and (ii) the sXY universality class, where the critical LL parameter is semi-
universal, K. = ("L

3. Physics in the weak-link regime

In this section, we study the critical behavior in the weak-link regime where the phase transition to the insulating
phase is driven by the weakest links, whereas proliferation of instanton—anti-instanton paris remains irrelevant.
Explicit solutions to the flow equations are obtained to demonstrate the BKT-like nature of the criticality.
Equation (2.11) takes into account only the contributions of microscopic weakest links. We justify this crucial
assumption by showing that the contribution of composite weak links is always subdominant.
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3.1. Criticality driven by the weakest links

We define the weak-link regime by the requirement ¢ < 2/3 so that the criticality is due to the weakest links. To
study this critical behavior, we neglect the instanton—anti-instanton pair term y*in (2.21b), and the relevant RG
equations simplify to

dK _ —K3w, (3.1a)
dz
d_W = W—_K w. (3.1b)
&z  (K-1D/C
The first integral is found by dividing (3.15) by (3.1a),
w= K1 i, (3.2)
(K — DK?
and then integrating both sides of the equation. We get
w=A-f(K), (3.3)
where A is an integration constant depending on the microscopic parameters and
1 1-¢ K-1
 Ky=—+ —7—=+(0- 0 . 3.4
FGR = og =+ (1= 0 (3.4)

Since on approach to the critical point from the SF phase w (£ = c0) = 0, the integration constant A satisfies
A =f(G K = 00)) (3.5

in the SF phase and at the critical point. In our model (1.2), A = A(U, A). Let us follow the parameter A alonga
line segment in the plane (U, A). Parameterizing the segmentas U = U (t), A = A(t), witha certain
parameter t, and assuming that the segment crosses the SF-BG critical line at the point (U, A.), in the vicinity of
the point (U, A) = (U (t.), A(t.)) we have

A(t) = A(te) + A(tc — 1). (3.6)
Similarly, following ¢ on the same line segment we have
C(t) ~ C(tc) + AZ(tc - t)- (37)

Here A; and A, are certain constants and #, is the critical value of . Without loss of generality, we assume t < t.
in the SF phase. Substituting (3.6) and (3.7) into (3.5) and keeping only the leading terms, we get

Koc(t) - C_l(tc) o8 \/tc —t. (38)

Hence, the LL parameter in the sXY universality class demonstrates the same square-root cusp as in the
conventional BKT case. The analogy with BKT transition can be traced further by investigating the linearized
flow equations near the critical point:

W oz, (3.9a)
dz
% N (3.9b)
Here we first introduce x () such that K () = ¢ :1 + x (¢) with (. denoting ((f.), and then rescale x and w:
2
1
X() = ﬂ, (3.10)
2(1 - ¢)
_ w(&)
W) = ——————. (3.11)
2(1 - Cc)Cc

The first integral of the system (3.94) and (3.9b) is readily found:
W) = () — A. (3.12)

Here A is an integration constant. By definition, A vanishes at the critical point. The constant A is an analytic
function of microscopic parameters because (3.12) is valid for finite £ where both %(¢) and w(¢') cannot have
singularities. This enables us to expand A as

A~ B(t. — t), (3.13)

with a positive constant B.
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The form of the complete solutions depends on the sign of A. For the SFside (A > 0), we have

21— ¢) JA 2(1 — ()CA
x(£) = c . ow(@) = A . (3.14)
¢ tanh[VA (2 — %) sinh? (VA (¢ — )]
For the insulator side (A < 0), the solution is
x(e) = 24 — &) A 4 L we = 1 — CIClAl (3.15)
¢ anlyIAl ¢ - &) sin? [IA] (¢ — 4)]
At the critical point, we have
x(£) = —d e w(f) = —(z,” o (3.16)

The second integration constant ¢, has the trivial meaning of the logarithm of the length unit. The correlation
length & hence diverges near the critical point in the same characteristic way as in the conventional BKT

case: In& ~ l/m ~ 1/ [t — t].

3.2. Irrelevance of composite weak links

To make sure that the theory of the sXY universality class is fully consistent, it is important to demonstrate that
composite weak links play only a subdominant role (in contrast to the assumptions of [8]) and thus can safely be
ignored in the RG analysis. Consider the simplest composite weak link—to be referred as a d-pair for brevity—
formed by two microscopic weak links (of comparable microscopic strength J,) separated by a distance d much
larger than the microscopic scale but much smaller than the clutch scale for any of the two links. Up to the length
scale A ~ d, the Kane—Fisher renormalization of the two links takes place independently and reduces to
multiplying each of the two J,’s by the factor

Ind
f ) = exp[—f; %], (3.17)

Mathematically, the merger of two renormalized links of strength J;(d) ~ J,(d) ~ Jo f (d) into one composite
link takes place upon integrating out the phase field between the two links. (We note in passing that, in the
renormalized theory, the phase field between the links depends only on 7and not on x.) An explicit calculation
yields the following estimate for the effective strength of the composite link

JDo ~ T () kd. (3.18)

This estimate is physically transparent, and immediately follows from second-order perturbation theory by
considering the d-pair as a quantum dot in the ‘Coulomb blockade’ regime. Then, J; (d) and ], (d) are two
effective single-particle tunneling matrix elements and 1/(xd) is the charging energy of the dot. For length scales
A > d the Kane—Fisher renormalization of the composite link reduces to multiplying (3.18) by the factor

In A 47
— — =1\ d). 3.19
exp[ I K(f)] FOV/F () (3.19)
Hence, for the renormalized strength of a d-pair we have
TN = &dJ§ f (d)f (V) (A > d). (3.20)
The clutch scale for the d-pair, A, then follows from the condition ]c(gl)np()\) AP ~ 1(inunits k = 1)
I f@f W) APd ~ 1. (3.21)

This is all we need to compare the contribution of d-pairs with the one of isolated weak links.

For a given system size L and scale d, we only need to account for those d-pairs which occur with a probability
of order one because pairs with higher density are absorbed into the renormalized value of A(L), whereas
unlikely pairs are accounted for at larger system sizes. This defines the characteristic J as a function of L and scale

d
U(l)/(l_C)]zd =1/L (for d-pairs within the scale d). (3.22)

For an explicit calculation, we confine ourselves to the critical point, which is the most dangerous regime for the
putative relevance of composite weak links. Here, with (3.16) we have

) = X<20-9) (critical flow). (3.23)
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Combining (3.21) and (3.22) with (3.23), we obtain
A@ T ¢
[1n2(d)1n2(/\£,f>) T*] ~ 1. (3.24)

Finally, replacing A with L under the logarithm, we get (with logarithmic accuracy)
D 1
N di L
and observe that the contribution of large d-pairs to the renormalization of A is suppressed relative to (3.16) by a
factor of In=2(d). Most importantly, the integral over the pair scales f d[In d]—yielding the total renormaliza-
tion contribution of all relevant d-pairs—converges at the lower limit, where microscopic pairs (and other multi-

link complexes) are an integral part of the original exponentially rare exponentially weak distribution of single
links.

(3.25)

4. Interplay between weak-link and Giamarchi-Schulz scenarios

The next natural question to ask is how the well-known GS criticality based on proliferation of instanton—anti-
instanton pairs crosses over to the weak-link criticality. It turns out that weak links are more aggressive and the
instanton—anti-instanton pairs can be neglected in the asymptotic flow at the tri-critical point. A direct
consequence of this fact is the continuous first-order derivative of the transition line at the tri-critical point.

4.1.RG equations for small deviations from the tri-critical point

To study the competition between weak links and instanton—anti-instanton pairs in the vicinity of the tri-critical
point, we rewrite identically K (¢) = 3/2 + x(£), ( = 2/3 + §,and consider x > 0 and 6 as small
parameters to simplify the RG equations. The tri-critical point is fixed by § = 0 with positive/negative §
corresponding to the GS/sXY criticality, respectively. Expanding (2.21a)—(2.21¢) to leading order in x and 6
results in

;1_); = —Xy, (41&)

dx )
=y, 4.1b
i y:—w (4.1b)
j—: = —(%x + 3(5)w. (4.1¢)

Here functions y and w have been rescaled to eliminate multiplicative constants. This is a set of three coupled,
first-order differential equations, implying that the solution will have three free constants. One of them, £, has
the same meaningas in section 3 (see (3.14) and (3.15)). Assuming corresponding choice of length units, we set
¢ = 0 from now on. The other two integration constants, denoted as C and D below, are related to the
microscopic parameters of the system and dictate the location of the SF-BG transition.

Extracting x from (4.1a) and plugging it into (4.1¢) leaves us with

dlnw 4 dlny
4+ 36 = ————. 4.2
ds 3 d¢ “2)
Integrating both sides over # leads to a first integral
2 L 372 g960/2 (4.3)

yo= 372

In the weak-link regime, and at the tri-critical point, where § < 0, (4.3) implies y?> < w;i.e., starting from some
mesoscopic length scale the weak-link term dominates over the instanton—anti-instanton pairs. The 36 in (4.1¢)
results in a non-universal critical parameter K. > 3/2 since otherwise w diverges. In the GS regime, the flow
starts with y2 < w but ultimately crosses over to 2 >> w at some length scale Z (see below) leading to a
universal critical LL parameter K. = 3/2 and the familiar BKT critical behavior.

Dividing (4.1b) by (4.1¢) and making use of (4.3), we have

(4x/3 + 36)dx = (C3/2w!/2e%/2 + T)dw. (4.4)
Integrating both sides from £ to £ and utilizing the second mean value theorem for definite integrals results in

2 32
(x + 35) _ (K) esoe/z L3 (4.5)
4 C 2

where 0 < 7 < land Dis our last integration constant.
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The meaning of the integration constant D is easily revealed by examining the weak-link critical line where
K (0) = ¢"'=3/2 — 9 §/4and x.(00) = —9 §/4 up toleading order in 6. From (4.5) the weak-link critical
line corresponds to

D. = 0. (4.6)

Since ¢ is a microscopic parameter, one can use § and D (controlling the location of the tri-critical point and the
transition line, respectively) to conveniently parameterize the whole problem.

4.2. Giamarchi-Schulz regime and the parabolic crossover

In the GS regime the critical condition K. = 2/3 translates into x. (c0) = 0. Moreover, the GS critical line will
lie on the positive side of the D = 0 line extended beyond the tri-critical point (see also below). However, as can
be seen from (4.3), the crossover length scale for the dominance of the vortex fugacity term satisfies the
condition Z > 1/, meaning that at small § (i) the initial flow of K is due to weak links, and (ii) the critical line is
closely following the D = 0 line. Indeed, substituting (4.3) into (4.5) gives

2
(x + %6) = y2e~ (=M 4 37W + D. (4.7)

The condition for the Giamarchi-Schulz critical line is then just

81
D. = (95/4)? = —
(96/4) e

62, (4.8)
since the first and second terms on the rhs flow to zero.

For the 1D disordered Bose—-Hubbard model, the microscopic parameter  (and thus ) and the integration
constant D are supposed to be analytic functions of the model parameters Uand A. Since (4.8) predicts that the
SF-BG boundary has a continuous first derivative across the tri-critical point in the (D, ()-plane, the same
property holdsin the (U, A)-plane. By the same token the second derivative is discontinuous. Therefore, the
crossover is parabolicin the (U, A)-plane.

5. Ground-state phase diagram of the 1D disordered Bose—Hubbard model

5.1. Protocol of extracting ¢
Our numerical procedure of extracting ¢ is based on measuring small probabilities, P o< J; /A=0 ofrare
realizations of disorder, when in a system of (moderate) size L there is an anomalously weak link, J,, with the
clutch scale much larger than the system size: k] (L)L < 1.(Here J (L) = J (A = L), seesection 2.) With open
boundary conditions such a link would cut the system into two essentially independent pieces. With twisted
boundary conditions it acts as a Josephson junction in a SF ring: the particle flux (persistent current) in the ring,
> in response to a phase twist, ¢, is related to J(L) by
ji= OF _ J(L)sin (T < 2mw?A/L), (5.1)
dp
where Fis the free energy. The first equality in (5.1) is absolutely general and does not imply any extra condition.
A delicate aspect of the static thermodynamic response to the gauge phase in low-dimensional systems is the
necessity to address the contribution of supercurrent states (i.e., states with non-zero global winding numbers of
the phase field around the ring) [12]. Supercurrent states can dramatically affect the second equality in (5.1) at
elevated temperature: in order to guarantee that their contribution is negligible, we need to consider
temperatures much lower than the energy of the first supercurrent state, T < 27w2A /L.
With (5.1) one relates J(L) to the second derivative of F with respect to g at ¢ = 0:
2
a=2L

5 (5.2)

p=0
Within the worldline representation (used in our numerical simulations by the worm algorithm), the rhs of (5.2)
is readily obtained by the well-known Pollock—Ceperley formula [15]
O°’F
Op?

= T(M?) |y, (53)
p=0

expressing the linear response as the variance of the worldline winding number M at a given temperature T
atp = 0.

The measured strength J(L) of the anomalously weak link is, of course, different from the microscopic value
Jo due to Kane—Fisher renormalization (\o/L)'/X. However, this renormalization does not depend on J,, and

9
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Figure 1. Determining ( for (U = 4.2, A = 3.8) using (5.6). The error bars for { denote one standard deviation (deduced by the
confidence level for a linear fit to all data points).

cannot affect the power-law exponent (. Hence

Jo o< T(M?)|p—0 (for all weak links at given Land T). (5.4)

Furthermore, for purposes of extracting ¢, (5.4) can be used even at an elevated temperature T > 27w A /L when
the persistent current response (5.1) is dramatically renormalized (suppressed) by the supercurrent states [12].
Indeed, in view of the perturbative nature of the weak link response, both Kane—Fisher and supercurrent
renormalizations reduce to a certain factor f (L, T)independent of J;,. In terms of J, and f (L, T), we then have

Jof(L, T) = T (M?)],—0, (5.5)

justifying (5.4).

If the concept of irrenormalizable weak links is correct, then finding the weakest link among the N > 1
different disorder realizations in a system of a moderate size L is equivalent to doing the same in a much larger
single system of size L; = LN. This leads to an efficient protocol for determining  using the approach by varying
N (and L, to validate the concept). The three natural limitations on L and N are: (i) L has to be sufficiently large to
capture all the essential microscopic physics of weak links; (ii) N should not be ‘astronomically’ large to ensure
that the size of the typical weakest link remains much smaller than L. In practice, this condition is hard to violate
even for amoderate value of L = 20; (iii) N should be large enough to ensure that the clutch scale of the weakest
link in a system of size L exceeds L.

To extract ¢, we simulate N;L = [10e'] i = 1, 2, 3,...) different disorder realizations (here [...] stands for
the closest integer) and record the smallest weak link parameter J;in a given simulation run; i.e., we use an
equidistant mesh for In NL to probe different length scales. To suppress statistical noise, the procedure is
repeated R = 20, 30, 40 times (depending on system size) and results from multiple runs, ]i(k) k=1,2,.,R),
are used to determine the typical weak link value as an average over all runs, J (N;L) = (J&)z. Its error bar

follows from the data dispersion, 6] (N;L) = \/ ({(UPP)R — JA(N;L)}/R. Finally, the data for In J (NL) is fitted
to alinear dependence

InJ = (( — 1)InNL + const, (5.6)

to extract the power-law exponent (. A characteristic example of the (-analysis is shown in figure 1. We see that
the data is perfectly described by a linear dependence, leading to an accurate determination of (. Within three-o
error margins, the slope of the linear fit does not change when going from L = 20 over L = 30to L = 40. This
behavior is in perfect agreement with the notion of (as an irrenormalizable microscopic parameter in the SF
phase and in the critical region. In fact, figure 1 is representative of the worst-case scenario because according to
our RG analysis (see figure 3 below) the parameter set (U = 4.2, A = 3.8) belongs to the BG phase in close
vicinity of the critical point when L = 40 is still smaller than the correlation length.

5.2.sXY critical line

In the weak-link regime we can neglect the instanton—anti-instanton effects in the asymptotic flow of the SF
stiffness (i.e., the term proportional to y2 in (2.21b)) in the SF phase and the critical region, and analyze the data
using the simpler (3.3) with A = f (¢, K (c0)) and

10
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Figure 2. Fine-size (see the legend) and extrapolated values (blue points and dashed line) of the LL parameter K for different disorder
strengths at U = 2.5. The red dashed line (with the red diamonds) is the (7! (A) function obtained by linear regression of the data for
(. The SF-BG transition point is located within the gray area where the phase is ambiguous from the fitting the RG flow due to
uncertainties of  (A) and K (L, A). We estimate the critical disorder strength tobe at A (U) = 2.69(4) (the magenta point and half
of the horizontal width of the gray area); its error bar is relatively small thanks to the sharp square-root dependence of K (0o, A).
Correspondingly, the critical LL parameter is estimated to be K. (co) = 1.72 £ 0.15 (the yellow star and half of the vertical width of
the gray area).

w = (G K(0)) — (G K). (5.7)

Since the f (¢, x)-function takes its maximum value at x = 1/, see (3.4), and the value of K can only decrease
with the scale of distance, we immediately conclude that, if at some scale we have K (L) > 1/( and
simultaneously w (L) < f({, (Y — f (¢, K (L)), then the fixed point of the flow corresponds to w (c0) = 0
and K (c0) > 1/(, i.e. the phase is SF. Otherwise, the flow reaches a point where K (L') = 1/¢ with w(L') > 0
and the flow continues to the BG phase.

To measure K(L), we extract the compressibility (L) and SF stiffness A(L) from the particle number and
winding number statistics. In the grand canonical ensemble the probability of finding a worldline configuration
with a given N or Wnumber is given by discrete Gaussian distributions

Wiy (M) o eflTMz/zA’ Wi (N) o ef(N7N)2/2TLH,) (5.8)

where N is the average particle number. From this, the SF stiffness can be obtained as

A—iTh| W@ | (5.9)
War (D) War (— 1)

and compressibility as

-
o Llnl[ _ WNAND ] (5.10)
TL WN(N]+ 1) Wy(IN] = 1)

where [N]is the closest integer to N.

The protocol of determining the critical point is as follows. We fix the value of U and start with measuring
the ¢ (A) dependence (all data points can be perfectly fit to a linear dependence). Next, we compute K (L, A)
values for a number of different system sizes and A-points. K (L, A) is reported as the median of the
distribution over several hundred (up to a thousand) disorder realizations. Finally, for each value of A, we
employ (3.1a) and (3.1b) to extract the w(L)-function by fitting finite-size data to the flow equations. Depending
on the result, we then either derive the thermodynamic limit answer for K (co) from (5.7) or conclude that the
flow is to the BG phase. To improve our estimate of the critical disorder strength, given a finite mesh in A, we
interpolate K (L, A) data between the points using linear fits and proceed with the flow analysis as described
above; higher-order polynomial fits produce similar results within the error bars. The critical parameter A (U)
is then found from the intersection of K (0o, A)and (~!(A) curves, see figure 2. Its error bar is mostly
determined by the uncertainty on the closest (and K (co) points.

5.3. Tri-critical point and the Giamarchi-Schulz criticality
The tri-critical point (Uy, Ay) separating the sXY and GS universality classes can be found from the intersection
of the sXY critical and ¢ = 2/3 lines. Two circumstances help us to locate it relatively accurately. On the one
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Figure 3. Ground-state phase diagram of the 1D disordered Bose~Hubbard model at unit filling factor. The sXY and GS critical lines
are shown in red and blue, respectively. The intersection of the interpolated ¢ = 2/3 line (dashed green) with any of the other critical
lines determines the tri-critical point (black dot within the pink uncertainty region). The cyan line shows the gaps of the Mott insulator
in the disorder-free system taken from [14], which signals the transition between the Mott insulator and the BG phase in the presence
of disorder. We also show the K (c0) = 3/2 line obtained by the tree tensor network (TTN) method [13] (orange), which agrees with
our GS-line within the error bars. As expected, in the weak-link regime, the TTN line ends inside the BG phase.

hand, from the analysis performed in section 4 we conclude that the sXY critical line can be smoothly
interpolated all the way to the intersection point. On the other hand, the sXY critical point Ac(U = 3.6) = 3.36
(the black dot in figure 3) deduced by the protocol described in the previous section, landed on the { = 2/3 line
(located at (U = 3.6, A = 3.38)) within error bars. This basically eliminates the need for determining the tri-
critical point from the intersection of interpolated curves. The procedure predicts

Uy = 3.40 + 0.23, Ay = 3.25 & 0.15. (5.11)

The value for U, is remarkably close to the critical value for the SF to Mott insulator transition in the absence of
disorder.

By knowing the slopes of the sXY critical and { = 2/3 linesin the (A, U)-plane and the location of the tri-
critical point, we are in a position to relate the integration constant D and the small parameter 6, controlling the
shape of the phase diagram in the vicinity of (Uy, Ay), to the Hamiltonian parameters. Using a linear expansion
aboutthe D = 0, 6 = 0 point

D = An(U — Ux) — Ap(A — Ay), (5.12)
6 =AU — Uy) — An(A — Ay, (5.13)
and numerical data determining the D = 0 and 6 = 0 curves, we find that

Ay /A, = 055 £ 0.11, Ay /Ay = 0.65 £ 0.06. (5.14)

Next, the dependence of K (00) on A in the SF phase in the weak-link regime allows us to obtain A;,.
Specifically, near the tri-critical point (4.5) implies

K(c0, A) — 1/¢ = D), (5.15)

This analysis allows us to determine the derivative of D with respect to A and results in

Ap =1.0+0.2. (5.16)

Similarly, A, controls the slope of the ¢ (A) line at fixed U. From the data sets computed at U = 3.0 and
U = 3.6 and linearly extrapolated to the tri-critical point, we find

Ay = 0.56 + 0.14. (5.17)

We are all set to make a quantitative prediction for the structure of the phase diagram in close vicinity of the
tri-critical point, including the location of the GS-line (the protocol of calculating the GS line away from the tri-
critical point is outlined below). The result is shown in figure 4 where (5.12) and (5.13) are used to plot the
D =0,6=0,and D = (81/16)6 (see (4.8)) curves for sXY, ( = 2/3,and GS lines, respectively. By observing
reasonable agreement between this prediction and an independent calculation of the GS-line relatively far from
the tri-critical point we validate the proposed theory.
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Figure 4. The SF-BG phase diagram in the vicinity of the tri-critical point. Equations (5.12)—(5.14), (5.16), and (5.17) were used to plot
the D = 0 (bold red and dashed red), 6 = 0 (dashed green),and D = (81/16)6? (bold blue) predictions for sXY, ¢ = 2/3,and GS
lines, respectively. We also plot our numerical data for the same lines (same color scheme as in figure 3).

Deep in the GS regime, when the weak link term w in the RG equations can be neglected, we are back to the
standard XY-universality class analysis. From

dy

—-— =(3/2 — K)y, 5.18a
17 3/ )y (5.184a)
dK 5
R 5.18b
a7 y ( )
we readily obtain the first integral as
2InK + 3/K=y*+ G, (5.19)

where G is the integration constant. The thermodynamic state can be established by solving the RG flow just as
we did for the weak-link regime. In the SF phase, the flow has a fixed pointaty = 0and K (co0) > 3/2.
Otherwise, if the finite-size system can reach a state with K (L) = 3/2and y > 0, the flow will continue towards
the BG phase with K (0c0) = 0. Numerically, we first fit the finite-size data to the RG flow to determine G and
then use the above-mentioned property of the first integral (5.19) to determine the phase. Technically, this
protocol is nearly identical to the one used in the weak-link regime and we do not repeat it here. The resulting
GS-line is shown in figure 3.

6. Concluding remarks

The importance of our successful application of the sXY criticality theory to the SE-BG transition in model (1.2)
is two-fold. First, we have corroborated the analytic theory of the interplay between the two university classes
and the structure of the phase diagram in the vicinity of the tri-critical point. Second, we establish the qualitative
and quantitative behavior of the ground-state phase diagram (and finite-size properties) of the Hamiltonian
(1.2) at (standard for many studies) unit filling. An integer filling, while being essential for having the Mott
insulator phase, has no effect on the universality class of SF-BG phase transition.

The theory rests on a rather non-trivial postulate of the existence of an irrenormalizable power-law
distribution of microscopic weak links. While being self-consistent—and, in this sense, rendering the theory
asymptotically exact—the postulate can hardly be proven as a theorem. Therefore, the data in figure 1
demonstrating excellent agreement with the (-postulate is at least as important as the phase diagram shown in
figure 3.

The ground-state phase diagram of (1.2) in the (U, A) plane features a characteristic line defined by the
condition { (U, A) = 2/3. Strictly speaking, this line is well defined only in the SF phase and at the SF-BG
phase boundary. However, the exponential divergence of the correlation length on approach to the SF-BG
critical point guarantees that the { = 2/3 line remains meaningful even inside the BG phase (see figure 3); the
data presented in figure 1 further illustrate this point. On the { < 2/3 side from the { = 2/3 line, the sXY
criticality preempts the GS scenario. This, in particular, means that superfluidity with 3/2 < K (L) < 1/¢in
this part of the phase diagram is guaranteed to be a finite-size effect, since the L — oo phase is BG.
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Attheintersection of the { = 2/3 line with the SF-BG phase boundary, there is a tri-critical point separating
the GS and sXY criticalities. According to our analysis, the phase boundary remains smooth at the tri-critical
point but the curvature is discontinuous. For purely numeric reasons the angle between the = 2/3 line and the
phase boundary happens to be rather small. As a result, despite accurately identifying the positions of both the
¢ = 2/3 line and the phase boundary, the uncertainty in the location of the tri-critical point remains relatively
large. Another consequence of the small angle intersection is that the critical value of K on the sXY line is only
slightly higher than the GS value of 3/2. Under such circumstances, a brute-force observation of the violation of
the GS scenario in the vicinity of the tri-critical point becomes problematic (see [ 13]) even though our data in
figure 2 are not compatible with GS even when done with a brute force analysis.

Tracing the fate of the sXY line far away from the tri-critical point (in the region of small Uand A) requires a
substantial numerical effort and goes beyond the scope of this paper.
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