28 research outputs found

    Bilayer infiltration system combines benefits from both coarse and fine sands promoting nutrient accumulation in sediments and increasing removal rates

    Get PDF
    Infiltration systems are treatment technologies based on water percolation through porous media where biogeochemical processes take place. Grain size distribution (GSD) acts as a driver of these processes and their rates and influences nutrient accumulation in sediments. Coarse sands inhibit anaerobic reactions such as denitrification and could constrain nutrient accumulation in sediments due to smaller specific surface area. Alternatively, fine sands provide higher nutrient accumulation but need a larger area available to treat the same volume of water; furthermore, they are more susceptible to bioclogging. Combining both sand sizes in a bilayer system would allow infiltrating a greater volume of water and the occurrence of aerobic/anaerobic processes. We studied the performance of a bilayer coarse-fine system compared to a monolayer fine one - by triplicate - in an outdoor infiltration experiment to close the C-N-P cycles simultaneously in terms of mass balances. Our results confirm that the bilayer coarse-fine GSD promotes nutrient removal by physical adsorption and biological assimilation in sediments, and further it enhances biogeochemical process rates (2-fold higher than the monolayer system). Overall, the bilayer coarse-fine system allows treating a larger volume of water per surface unit achieving similar removal efficiencies as the fine system. This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Environmental science and technology

    Interaction between physical heterogeneity and microbial processes in subsurface sediments: a laboratory-scale column experiment

    Get PDF
    Physical heterogeneity determines interstitial fluxes in porous media. Nutrients and organic matter distribution in depth influence physicochemical and microbial processes occurring in subsurface. Columns 50 cm long were filled with sterile silica sand following five different setups combining fine and coarse sands or a mixture of both mimicking potential water treatment barriers. Water was supplied continuously to all columns during 33 days. Hydraulic conductivity, nutrients and organic matter, biofilm biomass, and activity were analyzed in order to study the effect of spatial grain size heterogeneity on physicochemical and microbial processes and their mutual interaction. Coarse sediments showed higher biomass and activity in deeper areas compared to the others; however, they resulted in incomplete denitrification, large proportion of dead bacteria in depth, and low functional diversity. Treatments with fine sediment in the upper 20 cm of the columns showed high phosphorus retention. However, low hydraulic conductivity values reported in these sediments seemed to constraint biofilm activity and biomass. On the other hand, sudden transition from coarse-to-fine grain sizes promoted a hot-spot of organic matter degradation and biomass growth at the interface. Our results reinforce the idea that grain-size disposition in subsurface sandy sediments drives the interstitial fluxes, influencing microbial processes. This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Environmental science and technolog

    Compromised Hippocampal Neuroplasticity in the Interferon-α and Toll-like Receptor-3 Activation-Induced Mouse Depression Model.

    Full text link
    Disrupted neuronal plasticity due to subtle inflammation is considered to play a fundamental role in the pathogenesis of major depressive disorder. Interferon-α (IFN-α) potentiates immune responses against viral pathogens that induce toll-like receptor-3 (TLR3) activation but evokes severe major depressive disorder in humans by mechanisms that remain insufficiently described. By using a previously established mouse model of depression induced by combined delivery of IFN-α and polyinosinic:polycytidylic acid (poly(I:C)), a TLR3 agonist, we provide evidence that IFN-α and poly(I:C) reduce apical dendritic spine density in the hippocampal CA1 area ex vivo via mechanisms involving decreased TrkB signaling. In vitro, IFN-α and poly(I:C) treatments required neuronal activity to reduce dendritic spine density and TrkB signaling. The levels of presynaptic protein vesicular glutamate transporter (VGLUT)-1 and postsynaptic protein postsynaptic density-95 (PSD95) were specifically decreased, whereas the expression of both synaptic and extrasynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 1 (AMPAR1) was increased by IFN-α and poly(I:C) delivery. Patch clamp recordings in primary hippocampal neurons revealed that morphological changes at the synapse induced by IFN-α and poly(I:C) costimulation were accompanied by an increased action potential threshold and action potential frequency, indicative of impaired neuronal excitability. Taken together, IFN-α and poly(I:C) delivery leads to structural and functional alterations at the synapse indicating that compromised neuroplasticity may play an integral role in the pathogenesis of immune response-induced depression

    A bilayer coarse-fine infiltration system minimizes bioclogging: the relevance of depth-dynamics

    No full text
    Bioclogging is a main concern in infiltration systems as it may significantly shorten the service life of these low-technology water treatment methods. In porous media, biofilms grow to clog partially or totally the pore network. Dynamics of biofilm accumulation (e.g., by attachment, detachment, advective transport in depth) and their impact on both surface and deep bioclogging are still not yet fully understood. To address this concern, a 104 day-long outdoor infiltration experiment in sand tanks was performed, using secondary treated wastewater and two grain size distributions (GSDs): a monolayer system filled with fine sand, and a bilayer one composed by a layer of coarse sand placed on top of a layer of fine sand. Biofilm dynamics as a function of GSD and depth were studied through cross-correlations and multivariate statistical analyses using different parameters from biofilm biomass and activity indices, plus hydraulic parameters measured at different depths. Bioclogging (both surface and deep) was found more significant in the monolayer fine system than in the bilayer coarse-fine one, possibly due to an early low-cohesive biofilm formation in the former, driven by lower porosity and lower fluxes; under such conditions biomass is favorably detached from the top layer, transported and accumulated in depth, so that new biomass might colonize the surface. On the other hand, in the bilayer system, fluxes are highest, and the biofilm is still in a growing phase, with low biofilm detachment capability from the top sand layer and high microbial activity in depth, resulting in low bioclogging. Overall, the bilayer coarse-fine system allows infiltrating higher volume of water per unit of surface area than the monolayer fine one, minimizing surface and deep bioclogging, and thus increasing the longevity and efficiency of infiltration systems. Bioclogging is a main concern in infiltration systems as it may significantly shorten the service life of these low-technology water treatment methods. In porous media, biofilms grow to clog partially or totally the pore network. Dynamics of biofilm accumulation (e.g., by attachment, detachment, advective transport in depth) and their impact on both surface and deep bioclogging are still not yet fully understood. To address this concern, a 104¿day-long outdoor infiltration experiment in sand tanks was performed, using secondary treated wastewater and two grain size distributions (GSDs): a monolayer system filled with fine sand, and a bilayer one composed by a layer of coarse sand placed on top of a layer of fine sand. Biofilm dynamics as a function of GSD and depth were studied through cross-correlations and multivariate statistical analyses using different parameters from biofilm biomass and activity indices, plus hydraulic parameters measured at different depths. Bioclogging (both surface and deep) was found more significant in the monolayer fine system than in the bilayer coarse-fine one, possibly due to an early low-cohesive biofilm formation in the former, driven by lower porosity and lower fluxes; under such conditions biomass is favorably detached from the top layer, transported and accumulated in depth, so that new biomass might colonize the surface. On the other hand, in the bilayer system, fluxes are highest, and the biofilm is still in a growing phase, with low biofilm detachment capability from the top sand layer and high microbial activity in depth, resulting in low bioclogging. Overall, the bilayer coarse-fine system allows infiltrating higher volume of water per unit of surface area than the monolayer fine one, minimizing surface and deep bioclogging, and thus increasing the longevity and efficiency of infiltration systems

    Bilayer Infiltration System Combines Benefits from Both Coarse and Fine Sands Promoting Nutrient Accumulation in Sediments and Increasing Removal Rates

    No full text
    Infiltration systems are treatment technologies based on water percolation through porous media where biogeochemical processes take place. Grain size distribution (GSD) acts as a driver of these processes and their rates and influences nutrient accumulation in sediments. Coarse sands inhibit anaerobic reactions such as denitrification and could constrain nutrient accumulation in sediments due to smaller specific surface area. Alternatively, fine sands provide higher nutrient accumulation but need a larger area available to treat the same volume of water; furthermore, they are more susceptible to bioclogging. Combining both sand sizes in a bilayer system would allow infiltrating a greater volume of water and the occurrence of aerobic/anaerobic processes. We studied the performance of a bilayer coarse–fine system compared to a monolayer fine oneby triplicatein an outdoor infiltration experiment to close the C–N–P cycles simultaneously in terms of mass balances. Our results confirm that the bilayer coarse–fine GSD promotes nutrient removal by physical adsorption and biological assimilation in sediments, and further it enhances biogeochemical process rates (2-fold higher than the monolayer system). Overall, the bilayer coarse–fine system allows treating a larger volume of water per surface unit achieving similar removal efficiencies as the fine system

    Interaction between Physical Heterogeneity and Microbial Processes in Subsurface Sediments: A Laboratory-Scale Column Experiment

    No full text
    Physical heterogeneity determines interstitial fluxes in porous media. Nutrients and organic matter distribution in depth influence physicochemical and microbial processes occurring in subsurface. Columns 50 cm long were filled with sterile silica sand following five different setups combining fine and coarse sands or a mixture of both mimicking potential water treatment barriers. Water was supplied continuously to all columns during 33 days. Hydraulic conductivity, nutrients and organic matter, biofilm biomass, and activity were analyzed in order to study the effect of spatial grain size heterogeneity on physicochemical and microbial processes and their mutual interaction. Coarse sediments showed higher biomass and activity in deeper areas compared to the others; however, they resulted in incomplete denitrification, large proportion of dead bacteria in depth, and low functional diversity. Treatments with fine sediment in the upper 20 cm of the columns showed high phosphorus retention. However, low hydraulic conductivity values reported in these sediments seemed to constraint biofilm activity and biomass. On the other hand, sudden transition from coarse-to-fine grain sizes promoted a hot-spot of organic matter degradation and biomass growth at the interface. Our results reinforce the idea that grain-size disposition in subsurface sandy sediments drives the interstitial fluxes, influencing microbial processes

    A guideline to frame stressor effects in freshwater ecosystems

    No full text
    Environmental policies fall short in protecting freshwater ecosystems, which are heavily threatened by human pressures and their associated stressors. One reason is that stressor effects depend on the context in which they occur and it is difficult to extrapolate patterns to predict the effect of stressors without these being contextualized in a general frame. This study aims at improving existing decision-making frameworks such as the DPSIR approach (Driver-Pressure-State-Impact-Response) or ERA (Environmental Risk Assessment) in the context of stressors. Here, we delve into stressor-impact relationships in freshwater ecosystems and develop a guideline which includes key characteristics such as stressor type, stressor duration, location, the natural levels of environmental variables to which each ecosystem is used to, among others. This guideline is intended to be useful in a wide range of ecosystem conditions and stressors. Incorporating these guidelines may favor the comparability of scientific results and may lead to a substantial advancement in the efficacy of diagnosis and predictive approaches of impacts.</p

    AP ‐2 reduces amyloidogenesis by promoting BACE 1 trafficking and degradation in neurons

    Full text link
    Cleavage of amyloid precursor protein (APP) by BACE-1 (beta-site APP cleaving enzyme 1) is the rate-limiting step in amyloid-beta (A beta) production and a neuropathological hallmark of Alzheimer's disease (AD). Despite decades of research, mechanisms of amyloidogenic APP processing remain highly controversial. Here, we show that in neurons, APP processing and A beta production are controlled by the protein complex-2 (AP-2), an endocytic adaptor known to be required for APP endocytosis. Now, we find that AP-2 prevents amyloidogenesis by additionally functioning downstream of BACE1 endocytosis, regulating BACE1 endosomal trafficking and its delivery to lysosomes. AP-2 is decreased in iPSC-derived neurons from patients with late-onset AD, while conditional AP-2 knockout (KO) mice exhibit increased A beta production, resulting from accumulation of BACE1 within late endosomes and autophagosomes. Deletion of BACE1 decreases amyloidogenesis and mitigates synapse loss in neurons lacking AP-2. Taken together, these data suggest a mechanism for BACE1 intracellular trafficking and degradation via an endocytosis-independent function of AP-2 and reveal a novel role for endocytic proteins in AD
    corecore