56 research outputs found

    Cabut, a C<sub>2</sub>H<sub>2</sub> zinc finger transcription factor, is required during <em>Drosophila</em> dorsal closure downstream of JNK signaling

    Get PDF
    AbstractDuring dorsal closure, the lateral epithelia on each side of the embryo migrate dorsally over the amnioserosa and fuse at the dorsal midline. Detailed genetic studies have revealed that many molecules are involved in this epithelial sheet movement, either with a signaling function or as structural or motor components of the process. Here, we report the characterization of cabut (cbt), a new Drosophila gene involved in dorsal closure. cbt is expressed in the yolk sac nuclei and in the lateral epidermis. The Cbt protein contains three C2H2-type zinc fingers and a serine-rich domain, suggesting that it functions as a transcription factor. cbt mutants die as embryos with dorsal closure defects. Such embryos show defects in the elongation of the dorsal-most epidermal cells as well as in the actomyosin cable assembly at the leading edge. A combination of molecular and genetic analyses demonstrates that cbt expression is dependent on the JNK cascade during dorsal closure, and it functions downstream of Jun regulating dpp expression in the leading edge cells

    Antibiotic use among 8-month-old children in Malmö, Sweden – in relation to child characteristics and parental sociodemographic, psychosocial and lifestyle factors

    Get PDF
    In the county of Scania, Sweden, antibiotic use among small children is among the highest in the country. The aim of this study was to investigate the associations between antibiotic use among 8-month-old children in Malmö and characteristics of the child as well as parental sociodemographic characteristics, lifestyle factors, and psychosocial support. The study was a population-based cross-sectional survey. The study population consisted of children who visited the Child Health Care (CHC) centres in Malmö for their 8-month health checkup during 2003–2006 and whose parents answered a self-administered questionnaire (n = 7266 children). The questionnaire was distributed to parents of children registered with the CHC and invited for an 8-month checkup during the study period. The odds of using antibiotics increased as parental educational level decreased. Using high educational level as a reference group, low maternal educational level was associated with an increased antibiotic use for the child, odds ratio (OR) = 1.61 (95% CI: 1.34–1.93). Furthermore, children whose parents were born outside Sweden showed higher antibiotic use, OR = 1.43 (95% CI: 1.24–1.65), in comparison with children whose parents were born in Sweden. Exposure to environmental smoking, parental experience of economic stress, and a low level of emotional support increased the odds for antibiotic use. Boys had higher odds of use of antibiotics than girls, OR = 1.40 (95% CI: 1.25–1.57). Having a low birth weight, having an allergy and having siblings also increased the odds for early antibiotic use, while breastfeeding seemed to have a protective role. Conclusion There were clear associations between parental factors such as sociodemographic, psychosocial and lifestyle factors and antibiotic use at this early stage of life. Several characteristics of the child also affected the use of antibiotics

    Homopolymer tract length dependent enrichments in functional regions of 27 eukaryotes and their novel dependence on the organism DNA (G+C)% composition

    Get PDF
    BACKGROUND: DNA homopolymer tracts, poly(dA).poly(dT) and poly(dG).poly(dC), are the simplest of simple sequence repeats. Homopolymer tracts have been systematically examined in the coding, intron and flanking regions of a limited number of eukaryotes. As the number of DNA sequences publicly available increases, the representation (over and under) of homopolymer tracts of different lengths in these regions of different genomes can be compared. RESULTS: We carried out a survey of the extent of homopolymer tract over-representation (enrichment) and over-proportional length distribution (above expected length) primarily in the single gene documents, but including some whole chromosomes of 27 eukaryotics across the (G+C)% composition range from 20 – 60%. A total of 5.2 × 10(7 )bases from 15,560 cleaned (redundancy removed) sequence documents were analyzed. Calculated frequencies of non-overlapping long homopolymer tracts were found over-represented in non-coding sequences of eukaryotes. Long poly(dA).poly(dT) tracts demonstrated an exponential increase with tract length compared to predicted frequencies. A novel negative slope was observed for all eukaryotes between their (G+C)% composition and the threshold length N where poly(dA).poly(dT) tracts exhibited over-representation and a corresponding positive slope was observed for poly(dG).poly(dC) tracts. Tract size thresholds where over-representation of tracts in different eukaryotes began to occur was between 4 – 11 bp depending upon the organism (G+C)% composition. The higher the GC%, the lower the threshold N value was for poly(dA).poly(dT) tracts, meaning that the over-representation happens at relatively lower tract length in more GC-rich surrounding sequence. We also observed a novel relationship between the highest over-representations, as well as lengths of homopolymer tracts in excess of their random occurrence expected maximum lengths. CONCLUSIONS: We discuss how our novel tract over-representation observations can be accounted for by a few models. A likely model for poly(dA).poly(dT) tract over-representation involves the known insertion into genomes of DNA synthesized from retroviral mRNAs containing 3' polyA tails. A proposed model that can account for a number of our observed results, concerns the origin of the isochore nature of eukaryotic genomes via a non-equilibrium GC% dependent mutation rate mechanism. Our data also suggest that tract lengthening via slip strand replication is not governed by a simple thermodynamic loop energy model

    Transcriptional Activity and Nuclear Localization of Cabut, the Drosophila Ortholog of Vertebrate TGF-β-Inducible Early-Response Gene (TIEG) Proteins

    Get PDF
    BackgroundCabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein.Methodology/Principal FindingsTo determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2.Conclusions/SignificanceOur results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins

    Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment

    Get PDF
    Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded RNA ligands, and IFNs shared pathways involving engagement of melanoma differentiation-associated protein 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), and mitochondrial antiviral signaling protein (MAVS), and subsequently induced IFN responses specifically in brain endothelia and epithelia of mice. Behavioral alterations were specifically dependent on brain endothelial and epithelial IFN receptor chain 1 (IFNAR). Using gene profiling, we identified that the endothelia-derived chemokine ligand CXCL10 mediated behavioral changes through impairment of synaptic plasticity. These results identified brain endothelial and epithelial cells as natural gatekeepers for virus-induced sickness behavior, demonstrated tissue specific IFNAR engagement, and established the CXCL10-CXCR3 axis as target for the treatment of behavioral changes during virus infection and type I IFN therapy
    • …
    corecore