22 research outputs found
Solar supergranulation revealed by granule tracking
Context: Supergranulation is a pattern of the velocity field at the surface
of the Sun, which has been known about for more than fifty years, however, no
satisfactory explanation of its origin has been proposed. Aims: New
observational constraints are therefore needed to guide theoretical approaches
which hesitate between scenarios that either invoke a large-scale instability
of the surface turbulent convection or a direct forcing by buoyancy. Method:
Using the 14-Mpixel CALAS camera at the Pic-du-Midi observatory, we obtained a
7.5h-long sequence of high resolution images with unprecedented field size.
Tracking granules, we have determined the velocity field at the Sun's surface
in great detail from a scale of 2.5Mm up to 250Mm.
Results: The kinetic energy density spectrum shows that supergranulation
peaks at 36Mm and spans on scales ranging between 20Mm and 75Mm. The decrease
of supergranular flows in the small scales is close to a -power law,
steeper than the equipartition Kolmogorov one. The probability distribution
function of the divergence field shows the signature of intermittency of the
supergranulation and thus its turbulent nature.Comment: 4 pages, accepted in Astronomy and Astrophysics (Letters
Synergies between the constitutive relation error concept and PGD model reduction for simplified V&V procedures
Detector Technologies for CLIC
The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear
electron-positron collider under development. It is foreseen to be built and
operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3
TeV, respectively. It offers a rich physics program including direct searches
as well as the probing of new physics through a broad set of precision
measurements of Standard Model processes, particularly in the Higgs-boson and
top-quark sectors. The precision required for such measurements and the
specific conditions imposed by the beam dimensions and time structure put
strict requirements on the detector design and technology. This includes
low-mass vertexing and tracking systems with small cells, highly granular
imaging calorimeters, as well as a precise hit-time resolution and power-pulsed
operation for all subsystems. A conceptual design for the CLIC detector system
was published in 2012. Since then, ambitious R&D programmes for silicon vertex
and tracking detectors, as well as for calorimeters have been pursued within
the CLICdp, CALICE and FCAL collaborations, addressing the challenging detector
requirements with innovative technologies. This report introduces the
experimental environment and detector requirements at CLIC and reviews the
current status and future plans for detector technology R&D.Comment: 152 pages, 116 figures; published as CERN Yellow Report Monograph
Vol. 1/2019; corresponding editors: Dominik Dannheim, Katja Kr\"uger, Aharon
Levy, Andreas N\"urnberg, Eva Sickin
Assessment and Characterization of Stress Induced by Via-First TSV Technology
Through silicon via (TSV) is a key enabling technology for 3D stacking. One of the main concerns regarding the TSV introduction inside the IC fabrication is the resulting stress buildup in the silicon substrate that may induce warpage or expansion at the wafer level, strain and crystalline defects in the neighboring silicon of the TSV, and finally can impact the performance and reliability of the CMOS devices as well. Polysilicon, tungsten, and copper are the three main conductors that are currently considered for TSV fabrication. In the first part of this paper, the different factors that contribute to the stress in these three TSV types, including the geometry, the materials, and the process, will be reviewed.
After bonding on a temporary carrier and thinning of the substrate to expose the via, the stress built up during the fabrication of the TSV can be also revealed by the expansion of the silicon membrane.
We present thermomechanical FEM simulations and compare them with the experimental findings. We also present some characterizations of silicon defects by chemical revelation around the TSV structures. For characterization of the stress in TSV structures, different techniques as EBSD, microRaman, and XRD are presented. Finally, we conclude that with the optimization of some key processing steps, the stress induced in via-first technology may be acceptable for IC integration.</jats:p
Mars Microphone Testing and LIBS Acoustic Characterisation for the Mars 2020 Rover
International audienceResults of the SuperCam LIBS-Mars Microphone system in the Mars environment will be presented, including LIBS acoustic emission from martian soil analogs
Strict upper error bounds on computed outputs of interest in computational structural mechanics
SPIRou @CFHT: design of the instrument control system
ABSTRACT SPIRou is a near-IR (0.98-2.35µm), echelle spectropolarimeter / high precision velocimeter being designed as a nextgeneration instrument for the 3.6m Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, with the main goals of detecting Earth-like planets around low-mass stars and magnetic fields of forming stars. The unique scientific and technical capabilities of SPIRou are described in a series of eight companion papers. In this paper, the means of controlling the instrument are discussed. Most of the instrument control is fairly normal, using off-the-shelf components where possible and reusing already available code for these components. Some aspects, however, are more challenging. In particular, the paper will focus on the challenges of doing fast (50 Hz) guiding with 30 mas repeatability using the object being observed as a reference and on thermally stabilizing a large optical bench to a very high precision (~1 mK)
