96 research outputs found

    Anatomy of coronary sinus ostium

    Get PDF
    Background: The coronary sinus is the main cardiac vein and it has become a clinically important structure especially through its role in providing access for different cardiac procedures. Materials and methods: The study was carried out on 100 randomly selected adult human cadaver hearts fixed in 10% formalin. The transverse and craniocaudal diameters of the coronary sinus ostium (CSO) were directly measured. The presence of the Thebesian valve was noted and the anatomical details of the valve were documented in each case in terms of the shape and extent of coverage of the CSO. Results: Considerable variations in the diameter of the CSO were observed. The mean craniocaudal diameter of the CSO was 8.1 ± 1.51 mm, and the mean transverse diameter was 7.67 ± 1.72 mm. Heart specimens without Thebesian valve tended to have larger ostia. The mean craniocaudal diameter and the mean transverse diameter of the CSO were statistically larger in the specimens without Thebesian valves (p = 0.000 and p = 0.001, respectively). Conclusions: The Thebesian valves were observed in 86 hearts, and a wide variety of their morphology was seen. The majority of the Thebesian valves were semilunar in shape (74.42%). The extent to which the valve covered the ostium was variable, including remnant valves that covered < 15% of the CSO (35%), and valves that were large and covered at least 75% of the CSO (22.09%). In 3 specimens the valve completely occluded the ostium.

    Morphologic characteristics of sacra associated with assimilation of the last lumbar vertebra

    Get PDF
    Background: The impact of lumbosacral transitional states on biomechanics of load transmission between the spine and the legs has been sporadically reported. The aims of the study were to identify morphostructural alterations of sacra associated with assimilation of the last lumbar vertebra and to analyse them in the light of their biomechanical impact. Materials and methods: Linear dimensions of sacrum, its body and base and articular surfaces were measured in 31 normal and 41 transitory sacra. Nineteen sacra presented articular and 22 osseous fusion of the last lumbar vertebra. Measured parameters were compared between normal sacra and the two variations of transitory sacra. Results: Sacra with articular fusion of the last lumbar vertebra showed more pronounced concavity of the sacral curvature and wider than long sacral bodies. The first sacral segment was modified, broaden, ventrally wider and elevated. Almost the whole segment bore at its sides auricular surfaces. Very small portion of the segment was non-articular with less pronounced wedging. Sacra with osseous fusion of the last lumbar vertebra showed similar concavity of the sacral curvature as normal sacra, but longer than wide sacral bodies. The ventral sloping half of the newly formed first segment bore auricular surfaces. The non-articular part was enlarged with pronounced wedging. Conclusions: The term “sacralisation“ includes both types of transitory sacra with mutually different morphostructural characteristics in contrast to the normal sacra. Analysis of these morphologic variations may help in understanding the different biomechanical properties and patterns of load transmissio

    Pine Pitch Canker and Insects: Regional Risks, Environmental Regulation, and Practical Management Options

    Get PDF
    Producción CientíficaPine pitch canker (PPC), caused by the pathogenic fungus Fusarium circinatum (Nirenberg and O’ Donnell), is a serious threat to pine forests globally. The recent introduction of the pathogen to Southern Europe and its spread in Mediterranean region is alarming considering the immense ecological and economic importance of pines in the region. Pines in forests and nurseries can be infected, resulting in severe growth losses and mortality. The pathogen is known to spread in plants for planting and in seeds, and results from recent studies have indicated that F. circinatum may also spread through phoretic associations with certain insects. With this review, we aim to expand the current understanding of the risk of insect-mediated spread of PPC in different parts of Europe. Through the joint action of a multinational researcher team, we collate the existing information about the insect species spectrum in different biogeographic conditions and scrutinize the potential of these insects to transmit F. circinatum spores in forests and nurseries. We also discuss the impact of environmental factors and forest management in this context. We present evidence for the existence of a high diversity of insects with potential to weaken pines and disseminate PPC in Europe, including several common beetle species. In many parts of Europe, temperatures are projected to rise, which may promote the activity of several insect species, supporting multivoltinism and thus, further amplifying the risk of insect-mediated dissemination of PPC. Integrated pest management (IPM) solutions that comply with forest management practices need to be developed to reduce this risk. We recommend careful monitoring of insect populations as the basis for successful IPM. Improved understanding of environmental control of the interaction between insects, the pathogen, and host trees is needed in order to support development of bio-rational strategies to safeguard European pine trees and forests against F. circinatum in future.European Cooperation in Science and Technology (COST Action FP1406 PINESTRENGTH)Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (project AGL2015-69370-R)Portuguese Foundation for Science and Technology (contract IF/00471/2013/CP1203/CT0001)Russian Foundation for Basic Research (grant 17-04-01486)Saint Petersburg State Polytechnical University (project 2019-0420

    Global Geographic Distribution and Host Range of Fusarium circinatum, the Causal Agent of Pine Pitch Canker

    Get PDF
    Fusarium circinatum, the causal agent of pine pitch canker (PPC), is currently one of the most important threats of Pinus spp. globally. This pathogen is known in many pine-growing regions, including natural and planted forests, and can affect all life stages of trees, from emerging seedlings to mature trees. Despite the importance of PPC, the global distribution of F. circinatum is poorly documented, and this problem is also true of the hosts within countries that are affected. The aim of this study was to review the global distribution of F. circinatum, with a particular focus on Europe. We considered (1) the current and historical pathogen records, both positive and negative, based on confirmed reports from Europe and globally; (2) the genetic diversity and population structure of the pathogen; (3) the current distribution of PPC in Europe, comparing published models of predicted disease distribution; and (4) host susceptibility by reviewing literature and generating a comprehensive list of known hosts for the fungus. These data were collated from 41 countries and used to compile a specially constructed geo-database. A review of 6297 observation records showed that F. circinatum and the symptoms it causes on conifers occurred in 14 countries, including four in Europe, and is absent in 28 countries. Field observations and experimental data from 138 host species revealed 106 susceptible host species including 85 Pinus species, 6 non-pine tree species and 15 grass and herb species. Our data confirm that susceptibility to F. circinatum varies between different host species, tree ages and environmental characteristics. Knowledge on the geographic distribution, host range and the relative susceptibility of different hosts is essential for disease management, mitigation and containment strategies. The findings reported in this review will support countries that are currently free of F. circinatum in implementing effective procedures and restrictions and prevent further spread of the pathogen

    A worldwide perspective on the management and control of Dothistroma needle blight

    Get PDF
    Dothistroma needle blight (DNB) caused by Dothistroma septosporum and Dothistroma pini is a damaging disease of pine in many countries. The disease led to the abandonment of planting susceptible Pinus species in parts of Africa, Asia, Australasia, Europe and North America. Although the disease can be effectively controlled using copper fungicides, this chemical is only routinely applied in forests in New Zealand and Australia. Other management tactics aimed at making conditions less favourable for disease development, such as thinning or pruning, may be effective on some, but not all, sites. Disease avoidance, by planting non-susceptible species, is the most common form of management in Europe, along with deployment of hosts with strong disease resistance. Although D. septosporum is present almost everywhere Pinus is grown, it is important that an effort is maintained to exclude introductions of new haplotypes that could increase virulence or enable host resistance to be overcome. A global strategy to exclude new introductions of Dothistroma and other damaging forest pathogens, facilitated by collaborative programmes and legislation, is needed.This study was partially supported by the EU COST Action FP1102 DIAROD (Determining Invasiveness and Risk of Dothistroma, http:// www.cost.eu/COST_Actions/fps/FP1102)http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1439-03292017-10-31hb2017Forestry and Agricultural Biotechnology Institute (FABI)GeneticsPlant Scienc
    corecore