40 research outputs found
Enhanced antitumoral activity of TLR7 agonists via activation of human endogenous retroviruses by HDAC inhibitors
In this work, we are reporting that “Shock and Kill”, a therapeutic approach designed to eliminate latent HIV from cell reservoirs, is extrapolatable to cancer therapy. This is based on the observation that malignant cells express a spectrum of human endogenous retroviral elements (HERVs) which can be transcriptionally boosted by HDAC inhibitors. The endoretroviral gene HERV-V2 codes for an envelope protein, which resembles syncytins. It is significantly overexpressed upon exposure to HDAC inhibitors and can be effectively targeted by simultaneous application of TLR7/8 agonists, triggering intrinsic apoptosis. We demonstrated that this synergistic cytotoxic effect was accompanied by the functional disruption of the TLR7/8-NFκB, Akt/PKB, and Ras-MEK-ERK signalling pathways. CRISPR/Cas9 ablation of TLR7 and HERV-V1/V2 curtailed apoptosis significantly, proving the pivotal role of these elements in driving cell death. The effectiveness of this new approach was confirmed in ovarian tumour xenograft studies, revealing a promising avenue for future cancer therapies
NGCPV: A new generation of concentrator photovoltaic cells, modules and systems
This work introduces the lines of research that the NGCPV project is pursuing and some of the first results obtained. Sponsored by the European Commission under the 7th Framework Program and NEDO (Japan) within the first collaborative call launched by both Bodies in the field of energy, NGCPV project aims at approaching the cost of the photovoltaic kWh to competitive prices in the framework of high concentration photovoltaics (CPV) by exploring the development and assessment of concentrator photovoltaic solar cells and modules, novel materials and new solar cell structures as well as methods and procedures to standardize measurement technology for concentrator photovoltaic cells and modules. More specific objectives we are facing are: (1) to manufacture a cell prototype with an efficiency of at least 45% and to undertake an experimental activity, (2) to manufacture a 35% module prototype and elaborate the roadmap towards the achievement of 40%, (3) to develop reliable characterization techniques for III-V materials and quantum structures, (4) to achieve and agreement within 5% in the characterization of CPV cells and modules in a round robin scheme, and (5) to evaluate the potential of new materials, devices technologies and quantum nanostructures to improve the efficiency of solar cells for CPV
NGCPV: a new generation of concentrator photovoltaic cells, modules and systems
Starting on June 2011, NGCPV is the first project funded jointly between the European Commission (EC) and the New Energy and Industrial Technology Development Organization (NEDO) of Japan to research on new generation concentration photovoltaics (CPV). The Project, through a collaborative research between seven European and nine Japanese leading research centers in the field of CPV, aims at lowering the cost of the CPVproduced photovoltaic kWh down to 5 ?cents. The main objective of the project is to improve the present concentrator cell, module and system efficiency, as well as developing advanced characterization tools for CPV components and systems. As particular targets, the project aims at achieving a cell efficiency of at least 45% and a CPV module with an efficiency greater than 35%. This paper describes the R&D activities that are being carried out within the NGCPV project and summarizes some of the most relevant results that have already been attained, for instance: the manufacturing of a 44.4% world record efficiency triple junction solar cell (by Sharp Corp.) and the installation of a 50 kWp experimental CPV plant in Spain, which will be used to obtain accurate forecasts of the energy produced at system level
Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder
Current models of schizophrenia and bipolar disorder implicate multiple genes,
however their biological relationships remain elusive. To test the genetic role
of glutamate receptors and their interacting scaffold proteins, the exons of ten
glutamatergic ‘hub’ genes in 1304 individuals were re-sequenced in
case and control samples. No significant difference in the overall number of
non-synonymous single nucleotide polymorphisms (nsSNPs) was observed between
cases and controls. However, cluster analysis of nsSNPs identified two exons
encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a
risk locus with five mutations highly enriched within these domains. A new
splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in
the human brain and the GRM1 mutation cluster could perturb the regulation of
this variant. The predicted effect on individuals harbouring multiple mutations
distributed in their ten hub genes was also examined. Diseased individuals
possessed an increased load of deleteriousness from multiple concurrent rare and
common coding variants. Together, these data suggest a disease model in which
the interplay of compound genetic coding variants, distributed among glutamate
receptors and their interacting proteins, contribute to the pathogenesis of
schizophrenia and bipolar disorders