84 research outputs found

    Generation and Structure of Solitary Rossby Vortices in Rotating Fluids

    Full text link
    The formation of zonal flows and vortices in the generalized Charney-Hasegawa-Mima equation is studied. We focus on the regime when the size of structures is comparable to or larger than the deformation (Rossby) radius. Numerical simulations show the formation of anticyclonic vortices in unstable shear flows and ring-like vortices with quiescent cores and vorticity concentrated in a ring. Physical mechanisms that lead to these phenomena and their relevance to turbulence in planetary atmospheres are discussed.Comment: 3 pages in REVTeX, 5 postscript figures separately, submitted to Phys. Rev.

    Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients

    Get PDF
    Ocean acidification (OA) along the US West Coast is intensifying faster than observed in the global ocean. This is particularly true in nearshore regions (<200 m) that experience a lower buffering capacity while at the same time providing important habitats for ecologically and economically significant species. While the literature on the effects of OA from laboratory experiments is voluminous, there is little understanding of present-day OA in-situ effects on marine life. Dungeness crab (Metacarcinus magister) is perennially one of the most valuable commercial and recreational fisheries. We focused on establishing OA-related vulnerability of larval crustacean based on mineralogical and elemental carapace to external and internal carapace dissolution by using a combination of different methods ranging from scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping and X-ray diffraction. By integrating carapace features with the chemical observations and biogeochemical model hindcast, we identify the occurrence of external carapace dissolution related to the steepest Ω calcite gradients (∆Ωcal,60) in the water column. Dissolution features are observed across the carapace, pereopods (legs), and around the calcified areas surrounding neuritic canals of mechanoreceptors. The carapace dissolution is the most extensive in the coastal habitats under prolonged (1-month) long exposure, as demonstrated by the use of the model hindcast. Such dissolution has a potential to destabilize mechanoreceptors with important sensory and behavioral functions, a pathway of sensitivity to OA. Carapace dissolution is negatively related to crab larval width, demonstrating a basis for energetic trade-offs. Using a retrospective prediction from a regression models, we estimate an 8.3% increase in external carapace dissolution over the last two decades and identified a set of affected OA-related sublethal pathways to inform future risk assessment studies of Dungeness crabs. -- Keywords : Dungeness crab ; Larval sensitivity ; Global climate change ; Ocean acidification ; Exoskeleton structure ; Dissolution ; Mechanoreceptor damage

    Polymeric human Fc-fusion proteins with modified effector functions

    Get PDF
    The success of Fc-fusion bio-therapeutics has spurred the development of other Fc-fusion products for treating and/or vaccinating against a range of diseases. We describe a method to modulate their function by converting them into well-defined stable polymers. This strategy resulted in cylindrical hexameric structures revealed by tapping mode atomic force microscopy (AFM). Polymeric Fc-fusions were significantly less immunogenic than their dimeric or monomeric counterparts, a result partly owing to their reduced ability to interact with critical Fc-receptors. However, in the absence of the fusion partner, polymeric IgG1-Fc molecules were capable of binding selectively to FcγRs, with significantly increased affinity owing to their increased valency, suggesting that these reagents may prove of immediate utility in the development of well-defined replacements for intravenous immunoglobulin (IVIG) therapy. Overall, these findings establish an effective IgG Fc-fusion based polymeric platform with which the therapeutic and vaccination applications of Fc-fusion immune-complexes can now be explored

    Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies)

    No full text
    Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

    Application of Laser Scanning Confocal Microscopy for the Visualization of M. tuberculosis in Lung Tissue Samples with Weak Ziehl–Neelsen Staining

    No full text
    One of the key requirements for the diagnosis of pulmonary tuberculosis is the identification of M. tuberculosis in tissue. In this paper, we present the advantages of specific fluorescent antibody labelling, combined with laser scanning confocal microscopy (LSCM), for the detection of M. tuberculosis in histological specimens of lung tissues. We demonstrate that the application of LSCM allows: (i) The automatic acquisition of images of the whole slice and, hence, the determination of regions for subsequent analysis; (ii) the acquisition of images of thick (20&ndash;40 &mu;m) slices at high resolution; (iii) single bacteria identification; and (iv) 3D reconstruction, in order to obtain additional information about the distribution, size, and morphology of solitary M. tuberculosis; as well as their aggregates and colonies, in various regions of tuberculosis inflammation. LSCM allows for the discrimination of the non-specific fluorescence of bacteria-like particles and their aggregates presented in histological lung samples, from the specific fluorescence of labelled M. tuberculosis, using spectrum emission analysis. The applied method was effective in the identification of M. tuberculosis in lung histological samples with weak Ziehl&ndash;Neelsen staining. Altogether, combining immunofluorescent labelling with the application of LSCM visualization significantly increases the effectiveness of M. tuberculosis detection
    corecore