37 research outputs found

    WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity

    Get PDF
    Centrioles are characterized by a nine-fold arrangement of microtubule triplets held together by an inner protein scaffold. These structurally robust organelles experience strenuous cellular processes such as cell division or ciliary beating while performing their function. However, the molecular mechanisms underlying the stability of microtubule triplets, as well as centriole architectural integrity remain poorly understood. Here, using ultrastructure expansion microscopy for nanoscale protein mapping, we reveal that POC16 and its human homolog WDR90 are components of the microtubule wall along the central core region of the centriole. We further found that WDR90 is an evolutionary microtubule associated protein. Finally, we demonstrate that WDR90 depletion impairs the localization of inner scaffold components, leading to centriole structural abnormalities in human cells. Altogether, this work highlights that WDR90 is an evolutionary conserved molecular player participating in centriole architecture integrity.</jats:p

    The mechanism of kinesin inhibition by kinesin binding protein

    Get PDF
    Subcellular compartmentalisation is necessary for eukaryotic cell function. Spatial and temporal regulation of kinesin activity is essential for building these local environments via control of intracellular cargo distribution. Kinesin binding protein (KBP) interacts with a subset of kinesins via their motor domains, inhibits their microtubule (MT) attachment and blocks their cellular function. However, its mechanisms of inhibition and selectivity have been unclear. Here we use cryo-electron microscopy to reveal the structure of KBP and of a KBP-kinesin motor domain complex. KBP is a TPR-containing, right-handed α-solenoid that sequesters the kinesin motor domain’s tubulin-binding surface, structurally distorting the motor domain and sterically blocking its MT attachment. KBP uses its α-solenoid concave face and edge loops to bind the kinesin motor domain, and selected structure-guided mutations disrupt KBP inhibition of kinesin transport in cells. The KBP-interacting motor domain surface contains motifs exclusively conserved in KBP-interacting kinesins, suggesting a basis for kinesin selectivity

    The Human Centriolar Protein CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule Binding

    Get PDF
    Centrioles are microtubule-based structures that play important roles notably in cell division and cilium biogenesis. CEP135/Bld10p family members are evolutionarily conserved microtubule-binding proteins important for centriole formation. Here, we analyzed in detail the microtubule-binding activity of human CEP135 (HsCEP135). X-ray crystallography and small-angle X-ray scattering in combination with molecular modeling revealed that the 158 N-terminal residues of HsCEP135 (HsCEP135-N) form a parallel two-stranded coiled-coil structure. Biochemical, cryo-electron, and fluorescence microscopy analyses revealed that in vitro HsCEP135-N interacts with tubulin, protofilaments, and microtubules and induces the formation of microtubule bundles. We further identified a 13 amino acid segment spanning residues 96-108, which represents a major microtubule-binding site in HsCEP135-N. Within this segment, we identified a cluster of three lysine residues that contribute to the microtubule bundling activity of HsCEP135-N. Our results provide the first structural information on CEP135/Bld10p proteins and offer insights into their microtubule-binding mechanism

    Identification of chlamydomonas central core centriolar proteins reveals a role for human WDR90 in ciliogenesis

    Get PDF
    Centrioles are evolutionarily conserved macromolecular structures that are fundamental to form cilia, flagella, and centrosomes. Centrioles are 9-fold symmetrical microtubule-based cylindrical barrels comprising three regions that can be clearly distinguished in the Chlamydomonas reinhardtii organelle: an ∼100-nm-long proximal region harboring a cartwheel; an ∼250-nm-long central core region containing a Y-shaped linker; and an ∼150-nm-long distal region ending at the transitional plate. Despite the discovery of many centriolar components, no protein has been localized specifically to the central core region in Chlamydomonas thus far. Here, combining relative quantitative mass spectrometry and super-resolution microscopy on purified Chlamydomonas centrioles, we identified POB15 and POC16 as two proteins of the central core region, the distribution of which correlates with that of tubulin glutamylation. We demonstrated that POB15 is an inner barrel protein within this region. Moreover, we developed an assay to uncover temporal relationships between centriolar proteins during organelle assembly and thus established that POB15 is recruited after the cartwheel protein CrSAS-6 and before tubulin glutamylation takes place. Furthermore, we discovered that two poc16 mutants exhibit flagellar defects, indicating that POC16 is important for flagellum biogenesis. In addition, we discovered that WDR90, the human homolog of POC16, localizes to a region of human centrioles that we propose is analogous to the central core of Chlamydomonas centrioles. Moreover, we demonstrate that WDR90 is required for ciliogenesis, echoing the findings in Chlamydomonas. Overall, our work provides novel insights into the identity and function of centriolar central core components

    A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity.</p> <p>Results</p> <p>Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an <it>in vivo </it>recombination strategy. Each AMP was then expressed as an Npro fusion protein in <it>Escherichia coli</it>. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On <it>in vitro </it>refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against <it>E. coli</it>, <it>Micrococcus </it>luteus and <it>S. cerevisia</it>.</p> <p>Conclusions</p> <p>The method described in this report allows the fast synthesis of genes that are optimized for over-expression in <it>E. coli </it>and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.</p

    Caenorhabditis elegans N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2

    Get PDF
    The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms

    Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost

    Get PDF
    Seamless cloning methods, such as sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the construction of protein expression plasmids. We here show that single-stranded gaps in double-stranded plasmids, which for example occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Conversely, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These data point out a critical factor for robust seamless cloning. Highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this method with two short insert-plasmid overlap regions, each counting only 15 nucleotides

    Structural determinants of microtubule minus end preference in CAMSAP CKK domains

    Get PDF
    CAMSAP/Patronins regulate microtubule minus-end dynamics. Their end specificity is mediated by their CKK domains, which we proposed recognise specific tubulin conformations found at minus ends. To critically test this idea, we compared the human CAMSAP1 CKK domain (HsCKK) with a CKK domain from Naegleria gruberi (NgCKK), which lacks minus-end specificity. Here we report near-atomic cryo-electron microscopy structures of HsCKK- and NgCKK-microtubule complexes, which show that these CKK domains share the same protein fold, bind at the intradimer interprotofilament tubulin junction, but exhibit different footprints on microtubules. NMR experiments show that both HsCKK and NgCKK are remarkably rigid. However, whereas NgCKK binding does not alter the microtubule architecture, HsCKK remodels its microtubule interaction site and changes the underlying polymer structure because the tubulin lattice conformation is not optimal for its binding. Thus, in contrast to many MAPs, the HsCKK domain can differentiate subtly specific tubulin conformations to enable microtubule minus-end recognition

    Data-collection strategy for challenging native SAD phasing

    Full text link
    Recent improvements in data-collection strategies have pushed the limits of native SAD (single-wavelength anomalous diffraction) phasing, a method that uses the weak anomalous signal of light elements naturally present in macromolecules. These involve the merging of multiple data sets from either multiple crystals or from a single crystal collected in multiple orientations at a low X-ray dose. Both approaches yield data of high multiplicity while minimizing radiation damage and systematic error, thus ensuring accurate measurements of the anomalous differences. Here, the combined use of these two strategies is described to solve cases of native SAD phasing that were particular challenges: the integral membrane diacylglycerol kinase (DgkA) with a low Bijvoet ratio of 1% and the large 200 kDa complex of the CRISPR-associated endonuclease (Cas9) bound to guide RNA and target DNA crystallized in the low-symmetry space group C2. The optimal native SAD data-collection strategy based on systematic measurements performed on the 266 kDa multiprotein/multiligand tubulin complex is discussed
    corecore