15 research outputs found

    Characterization of a recent malaria outbreak in the autonomous indigenous region of Guna Yala, Panama

    Get PDF
    BackgroundThis study aims to describe the epidemiological and entomological factors associated with a recent malaria outbreak that occurred in 2012 in a socially marginalized population from Guna Yala Comarca in Panama.MethodsA descriptive and observational study was conducted by analysing demographic and epidemiological data from all malaria cases registered during 2012 in the Comarca Guna Yala, Panama. Malaria intensity indicators were calculated during the study period. Entomological evaluations were performed monthly, from October to December 2012, in the three communities that presented the most intense malaria transmission during the first semester of 2012. Anopheles breeding habitats were also characterized.ResultsDuring the studied period, 6754 blood smears were examined (17.8 % of the total population), and 143 were confirmed as positive for Plasmodium vivax. A significant increase of malaria transmission risk indicators (API: 3.8/1000, SPR: 2.1 %) was observed in Guna Yula, when compared with previous years, and also in comparison with estimates from the whole country. Anopheles albimanus was the most abundant and widespread (877; 72.0 %) vector species found in the three localities, followed by Anopheles punctimacula (231; 19.0 %) and Anopheles aquasalis (110; 9.0 %). Three An. albimanus pools were positive for P. vivax, showing an overall pooled prevalence estimate of 0.014.ConclusionsData analysis confirmed that during 2012 a malaria epidemic occurred in Guna Yala. Panama. This study provides baseline data on the local epidemiology of malaria in this vulnerable region of Panama. This information will be useful for targeting control strategies by the National Malaria Control Programme

    Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model

    Get PDF
    Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent

    Neutrophil Paralysis in Plasmodium vivax Malaria

    Get PDF
    Plasmodium vivax is responsible for approximately 60–80% of the malaria cases in the world, and contributes to significant social and economic instability in the developing countries of Latin America and Asia. The pathogenesis of P. vivax malaria is a consequence of host derived inflammatory mediators. Hence, a better understanding of the mechanisms involved in induction of systemic inflammation during P. vivax malaria is critical for the clinical management and prevention of severe disease. The innate immune receptors recognize Plasmodium sp. and initiate a broad spectrum of host defense mechanisms that mediate resistance to infection. However, the innate immune response is the classic “two-edged sword”, and clinical malaria is associated with high levels of circulating pro-inflammatory cytokines. Our findings show that both monocytes and neutrophils are highly activated during malaria. Monocytes produced high levels of IL-1β, IL-6 and TNF-α during acute malaria. On the other hand, neutrophils were a poor source of cytokines, but displayed an enhanced phagocytic activity and superoxide production. Unexpectedly, we noticed an impaired chemotaxis of neutrophils towards an IL-8 (CXCL8) gradient. We proposed that neutrophil paralysis is in part responsible for the enhanced susceptibility to bacterial infection observed in malaria patients
    corecore