1,811 research outputs found

    An oscillatory interference model of grid cell firing

    Get PDF
    We expand upon our proposal that the oscillatory interference mechanism proposed for the phase precession effect in place cells underlies the grid-like firing pattern of dorsomedial entorhinal grid cells (O'Keefe and Burgess (2005) Hippocampus 15:853-866). The original one-dimensional interference model is generalized to an appropriate two-dimensional mechanism. Specifically, dendritic subunits of layer 11 medial entorhinal stellate cells provide multiple linear interference patterns along different directions, with their product determining the firing of the cell. Connection of appropriate speed- and direction- dependent inputs onto dendritic subunits could result from an unsupervised learning rule which maximizes postsynaptic firing (e.g. competitive learning). These inputs cause the intrinsic oscillation of subunit membrane potential to. increase above theta frequency by an amount proportional to the animal's speed of running in the "preferred" direction. The phase difference between this oscillation and a somatic input at theta-frequency essentially integrates velocity so that the interference of the two oscillations reflects distance traveled in the preferred direction. The overall grid pattern is maintained in environmental location by phase reset of the grid cell by place cells receiving sensory input from the environment, and environmental boundaries in particular. We also outline possible variations on the basic model, including the generation of grid-like firing via the interaction of multiple cells rather than via multiple dendritic subunits. Predictions of the interference model are given for the frequency composition of EEG power spectra and temporal autocorrelograms of grid cell firing as functions of the speed and direction of running and the novelty of the environment. (C) 2007 Wiley-Liss, Inc

    Theta-modulated place-by-direction cells in the hippocampal formation in the rat

    Get PDF
    We report the spatial and temporal properties of a class of cells termed theta-modulated place-by-direction (TPD) cells recorded from the presubicular and parasubicular cortices of the rat. The firing characteristics of TPD cells in open-field enclosures were compared with those of the following two other well characterized cell classes in the hippocampal formation: place and head-direction cells. Unlike place cells, which code only for the animal's location, or head-direction cells, which code only for the animal's directional heading, TPD cells code for both the location and the head direction of the animal. Their firing is also strongly theta modulated, firing primarily at the negative-to-positive phase of the locally recorded theta wave. TPD theta modulation is significantly stronger than that of place cells. In contrast, the firing of head-direction cells is not modulated by theta at all. In repeated exposures to the same environment, the locational and directional signals of TPD cells are stable. When recorded in different environments, TPD locational and directional fields can uncouple, with the locational field shifting unpredictably ("remapping"), whereas the directional preference remains similar across environments

    Blue harvest: inland fisheries as an ecosystem service

    Get PDF
    Global food production has increased greatly in recent years and rural livelihoods are much improved in many regions. Yet, despite this clear progress rural poverty and food insecurity remain deeply entrenched in many areas, especially in South Asia and sub-Saharan Africa. In response the international community has renewed calls for increased commitment to meeting the needs of the world's poor. This report, commissioned as a contribution to the 10th Conference of the Parties to the Convention on Biological Diversity taking place in Nagoya, Japan, not only underlines the value of freshwater fisheries but provides guidance on how the ecosystem approach can be applied in order to sustain future harvests.Inland fisheries, Nutrition, Food security, Sustainability, Ecosystems

    Initial Estimates On Shipping’s Cost Impacts and Emissions for a Range of Policy Options - A Prototype Model

    Get PDF
    Shipping was estimated, in 2007, to be responsible for 3.3% of anthropogenic CO2 emissions. Scenarios for future growth in transport demand suggest that this share could substantially increase in the next 40 years, and without regulation the growth in emissions associated with that demand growth would be uncontrolled. Modelling can be used to understand the potential trajectories of emissions from the shipping industry and its potential development and impacts under foreseeable economic scenarios. Modelling can also be used to estimate the response (in terms of changes to those emissions trajectories and impacts on the industry) due to hypothetical regulation and policies. This paper proposes methods for conceptualizing the different components of the shipping industry for these purposes

    Book Reviews

    Get PDF
    Book Review 1Book Title: Ecotoxicology. The Study of Pollutants in Ecosystems. (Second edition)Book Author: F. MoriartyAcademic Press, 1988. 289 pages.Book Review 2Book Title: Ecology of Sandy ShoresBook Authors: A.C. Brown & A. McLachlanElsevier, 1990. 328 pages.Book Review 3Book Title: Ecology and Natural History of Tropical BeesBook Author: David W. RoubikCambridge University Press, Cambridge, 1989Book Review 4Book Title: The AntsBook Authors: Bert Hölldobler & Edward O. WilsonThe Belknap Press of Harvard University Press, Cambridge, Massachusetts,1990. 732 pages.Book Review 5Book Title: Social Insects: an evolutionary approach to castes and reproductionBook Author: Edited by W. EngelsSpringer Verlag, Berlin 1990. 265 pages.Book Review 6Book Title: Mathematical BiologyBook Author: J.D. MurraySpringer-Verlag, New York, 1989. 767 pages. Volume 19 in the Biomathematics series

    Cognitive graphs, resistive grids, and the hippocampal representation of space.

    Full text link

    Neural representations of location composed of spatially periodic bands.

    Get PDF
    The mammalian hippocampal formation provides neuronal representations of environmental location, but the underlying mechanisms are poorly understood. Here, we report a class of cells whose spatially periodic firing patterns are composed of plane waves (or bands) drawn from a discrete set of orientations and wavelengths. The majority of cells recorded in parasubicular and medial entorhinal cortices of freely moving rats belonged to this class and included grid cells, an important subset that corresponds to three bands at 60° orientations and has the most stable firing pattern. Occasional changes between hexagonal and nonhexagonal patterns imply a common underlying mechanism. Our results indicate a Fourier-like spatial analysis underlying neuronal representations of location, and suggest that path integration is performed by integrating displacement along a restricted set of directions

    Event-based camera refractory period characterization and initial clock drift evaluation

    Get PDF
    Event-based camera (EBC) technology provides high-dynamic range operation and shows promise for efficient capture of spatio-temporal information, producing a sparse data stream and enabling consideration of nontraditional data processing solutions (e.g., new algorithms, neuromorphic processors, etc.). Given the fundamental difference in camera architecture, the EBC response and noise behavior differ considerably compared to standard CCD/CMOS framing sensors. These differences necessitate the development of new characterization techniques and sensor models to evaluate hardware performance and elucidate the trade-space between the two camera architectures. Laboratory characterization techniques reported previously include noise level as a function of static scene light level (background activity) and contrast responses referred to as S-curves. Here we present further progress on development of basic characterization methods and test capabilities for commercial-off-the-shelf (COTS) visible EBCs, with a focus on measurement of pixel deadtime (refractory period) including results for the 4th-generation sensor from Prophesee and Sony. Refractory period is empirically determined from analysis of the interspike intervals (ISIs), and results visualized using log-histograms of the minimum per-pixel ISI values for a subset of pixels activated by a controlled dynamic scene. Our tests of the Prophesee gen4 EVKv2 yield refractory period estimates ranging from 6.1 msec to 6.8 μsec going from the slowest (20) to fastest (100) settings of the relevant bias parameter, bias_refr. We also introduce and demonstrate the concept of pixel bandwidth measurement from data captured while viewing a static scene – based on recording data at a range of refractory period setting and then analyzing noise-event statistics. Finally, we present initial results for estimating and correcting EBC clock drift using a GPS PPS signal to generate special timing events in the event-list data streams generated by the DAVIS346 and DVXplorer EBCs from iniVation

    Clouds, shadows, or twilight? Mayfly nymphs recognise the difference

    Get PDF
    1. We examined the relative changes in light intensity that initiate night-time locomotor activity changes in nymphs of the mayfly, Stenonema modestum (Heptageniidae). Tests were carried out in a laboratory stream to examine the hypothesis that nymphs increase their locomotion in response to the large and sustained reductions in relative light intensity that take place during twilight but not to short-term daytime light fluctuations or a minimum light intensity threshold. Ambient light intensity was reduced over a range of values representative of evening twilight. Light was reduced over the same range of intensities either continuously or in discrete intervals while at the same time nymph activity on unglazed tile substrata was video recorded. 2. Nymphs increased their locomotor activity during darkness in response to large, sustained relative light decreases, but not in response to short-term, interrupted periods of light decrease. Nymphs did not recognise darkness unless an adequate light stimulus, such as large and sustained relative decrease in light intensity, had taken place. 3. We show that nymphs perceive light change over time and respond only after a lengthy period of accumulation of light stimulus. The response is much lengthier than reported for other aquatic organisms and is highly adaptive to heterogeneous stream environments
    • …
    corecore