284 research outputs found
Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries
Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available
Resources to Support Faculty Writing Data Management Plans: Lessons Learned from an Engineering Pilot
Recent years have seen a growing emphasis on the need for improved management of research data. Academic libraries have begun to articulate the conceptual foundations, roles, and responsibilities involved in data management planning and implementation. This paper provides an overview of the Engineering data support pilot at the University of Michigan Library as part of developing new data services and infrastructure. Through this pilot project, a team of librarians had an opportunity to identify areas where the library can play a role in assisting researchers with data management, and has put forth proposals for immediate steps that the library can take in this regard. The paper summarizes key findings from a faculty survey and discusses lessons learned from an analysis of data management plans from accepted NSF proposals. A key feature of this Engineering pilot project was to ensure that these study results will provide a foundation for librarians to educate and assist researchers with managing their data throughout the research lifecycle.http://deepblue.lib.umich.edu/bitstream/2027.42/170414/2/315-Article Text-1305-1-10-20140617.pdfPublished onlineDescription of 315-Article Text-1305-1-10-20140617.pdf : Published versio
Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries
BACKGROUND:Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. METHODOLOGY/PRINCIPAL FINDINGS:The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1-4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. CONCLUSIONS/SIGNIFICANCE:Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings
Transmission and control of Plasmodium knowlesi: a mathematical modelling study.
INTRODUCTION: Plasmodium knowlesi is now recognised as a leading cause of malaria in Malaysia. As humans come into increasing contact with the reservoir host (long-tailed macaques) as a consequence of deforestation, assessing the potential for a shift from zoonotic to sustained P. knowlesi transmission between humans is critical. METHODS: A multi-host, multi-site transmission model was developed, taking into account the three areas (forest, farm, and village) where transmission is thought to occur. Latin hypercube sampling of model parameters was used to identify parameter sets consistent with possible prevalence in macaques and humans inferred from observed data. We then explore the consequences of increasing human-macaque contact in the farm, the likely impact of rapid treatment, and the use of long-lasting insecticide-treated nets (LLINs) in preventing wider spread of this emerging infection. RESULTS: Identified model parameters were consistent with transmission being sustained by the macaques with spill over infections into the human population and with high overall basic reproduction numbers (up to 2267). The extent to which macaques forage in the farms had a non-linear relationship with human infection prevalence, the highest prevalence occurring when macaques forage in the farms but return frequently to the forest where they experience higher contact with vectors and hence sustain transmission. Only one of 1,046 parameter sets was consistent with sustained human-to-human transmission in the absence of macaques, although with a low human reproduction number (R(0H) = 1.04). Simulations showed LLINs and rapid treatment provide personal protection to humans with maximal estimated reductions in human prevalence of 42% and 95%, respectively. CONCLUSION: This model simulates conditions where P. knowlesi transmission may occur and the potential impact of control measures. Predictions suggest that conventional control measures are sufficient at reducing the risk of infection in humans, but they must be actively implemented if P. knowlesi is to be controlled
Resources to Support Faculty Writing Data Management Plans: Lessons Learned from an Engineering Pilot
Recent years have seen a growing emphasis on the need for improved management of research data. Academic libraries have begun to articulate the conceptual foundations, roles, and responsibilities involved in data management planning and implementation. This paper provides an overview of the Engineering data support pilot at the University of Michigan Library as part of developing new data services and infrastructure. Through this pilot project, a team of librarians had an opportunity to identify areas where the library can play a role in assisting researchers with data management, and has put forth proposals for immediate steps that the library can take in this regard. The paper summarizes key findings from a faculty survey and discusses lessons learned from an analysis of data management plans from accepted NSF proposals. A key feature of this Engineering pilot project was to ensure that these study results will provide a foundation for librarians to educate and assist researchers with managing their data throughout the research lifecycle
Effect of Longitudinal Variation in Tumor Volume Estimation for MRI-guided Personalization of Breast Cancer Neoadjuvant Treatment
Purpose To investigate the impact of longitudinal variation in functional tumor volume (FTV) underestimation and overestimation in predicting pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC). Materials and Methods Women with breast cancer who were enrolled in the prospective I-SPY 2 TRIAL (Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2) from May 2010 to November 2016 were eligible for this retrospective analysis. Participants underwent four MRI examinations during NAC treatment. FTV was calculated based on automated segmentation. Baseline FTV before treatment (FTV0) and the percentage of FTV change at early treatment and inter-regimen time points relative to baseline (∆FTV1 and ∆FTV2, respectively) were classified into high-standard or standard groups based on visual assessment of FTV under- and overestimation. Logistic regression models predicting pCR using single predictors (FTV0, ∆FTV1, and ∆FTV2) and multiple predictors (all three) were developed using bootstrap resampling with out-of-sample data evaluation with the area under the receiver operating characteristic curve (AUC) independently in each group. Results This study included 432 women (mean age, 49.0 years ± 10.6 [SD]). In the FTV0 model, the high-standard and standard groups showed similar AUCs (0.61 vs 0.62). The high-standard group had a higher estimated AUC compared with the standard group in the ∆FTV1 (0.74 vs 0.63), ∆FTV2 (0.79 vs 0.62), and multiple predictor models (0.85 vs 0.64), with a statistically significant difference for the latter two models
MRI-Based Model for Personalizing Neoadjuvant Treatment in Breast Cancer
Background: Functional tumor volume (FTV), measured from dynamic contrast-enhanced MRI, is an imaging biomarker that can predict treatment response in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). The FTV-based predictive model, combined with core biopsy, informed treatment decisions of recommending patients with excellent responses to proceed to surgery early in a large NAC clinical trial. Methods: In this retrospective study, we constructed models using FTV measurements. We analyzed performance tradeoffs when a probability threshold was used to identify excellent responders through the prediction of pathology complete response (pCR). Individual models were developed within cohorts defined by the hormone receptor and human epidermal growth factor receptor 2 (HR/HER2) subtype. Results: A total of 814 patients enrolled in the I-SPY 2 trial between 2010 and 2016 were included with a mean age of 49 years (range: 24 to 77). Among these patients, 289 (36%) achieved pCR. The area under the ROC curve (AUC) ranged from 0.68 to 0.74 for individual HR/HER2 subtypes. When probability thresholds were chosen based on minimum positive predictive value (PPV) levels of 50%, 70%, and 90%, the PPV-sensitivity tradeoff varied among subtypes. The highest sensitivities (100%, 87%, 45%) were found in the HR−/HER2+ sub-cohort for probability thresholds of 0, 0.62, and 0.72; followed by the triple-negative sub-cohort (98%, 52%, 4%) at thresholds of 0.13, 0.58, and 0.67; and HR+/HER2+ (78%, 16%, 8%) at thresholds of 0.34, 0.57, and 0.60. The lowest sensitivities (20%, 0%, 0%) occurred in the HR+/HER2− sub-cohort. Conclusions: Predictive models developed using imaging biomarkers, alongside clinically validated probability thresholds, can be incorporated into decision-making for precision oncology
Targeting vaccinations for the licensed dengue vaccine: considerations for serosurvey design
Background The CYD-TDV vaccine was unusual in that the recommended target population for vaccination was originally defined not only by age, but also by transmission setting as defined by seroprevalence. WHO originally recommended countries consider vaccination against dengue with CYD-TDV vaccine in geographic settings only where prior infection with any dengue serotype, as measured by seroprevalence, was >170% in the target age group. Vaccine was not recommended in settings where seroprevalence was <50%. Test-and-vaccinate strategies suggested following new analysis by Sanofi will still require age-stratified seroprevalence surveys to optimise age-group targeting. Here we address considerations for serosurvey design in the context of vaccination program planning. Methods To explore how the design of seroprevalence surveys affects estimates of transmission intensity, 100 age-specific seroprevalence surveys were simulated using a beta-binomial distribution and a simple catalytic model for different combinations of age-range, survey size, transmission setting, and test sensitivity/specificity. We then used a Metropolis-Hastings Markov Chain Monte-Carlo algorithm to estimate the force of infection from each simulated dataset. Results Sampling from a wide age-range led to more accurate estimates than merely increasing sample size in a narrow age-range. This finding was consistent across all transmission settings. The optimum test sensitivity and specificity given an imperfect test differed by setting with high sensitivity being important in high transmission settings and high specificity important in low transmission settings. Conclusions When assessing vaccination suitability by seroprevalence surveys, countries should ensure an appropriate age-range is sampled, considering epidemiological evidence about the local burden of disease
High Seroprevalence of Enterovirus Infections in Apes and Old World Monkeys
To estimate population exposure of apes and Old World monkeys in Africa to enteroviruses (EVs), we conducted a seroepidemiologic study of serotype-specific neutralizing antibodies against 3 EV types. Detection of species A, B, and D EVs infecting wild chimpanzees demonstrates their potential widespread circulation in primates
- …
