341 research outputs found

    Cost-effectiveness analysis of malaria chemoprophylaxis for travellers to West-Africa

    Get PDF
    BACKGROUND: The importation of malaria to non-endemic countries remains a major cause of travel-related morbidity and a leading cause of travel-related hospitalizations. Currently they are three priority medications for malaria prophylaxis to West Africa: mefloquine, atovaquone/proguanil and doxycycline. We investigate the cost effectiveness of a partial reimbursement of the cheapest effective malaria chemoprophylaxis (mefloquine) for travellers to high risk areas of malaria transmission compared with the current situation of no reimbursement. METHODS: This study is a cost-effectiveness analysis based on malaria cases imported from West Africa to Switzerland from the perspective of the Swiss health system. We used a decision tree model and made a literature research on the components of travel related malaria. The main outcome measure was the cost effectiveness of malaria chemoprophylaxis reimbursement based on malaria and deaths averted. RESULTS: Using a program where travellers would be reimbursed for 80% of the cost of the cheapest malaria chemoprophylaxis is dominant (i.e. cost saving and more effective than the current situation) using the assumption that currently 68.7% of travellers to West Africa use malaria chemoprophylaxis. If the current usage of malaria chemoprophylaxis would be higher, 82.4%, the incremental cost per malaria case averted is € 2'302. The incremental cost of malaria death averted is € 191'833.The most important factors influencing the model were: the proportion of travellers using malaria chemoprophylaxis, the probability of contracting malaria without malaria chemoprophylaxis, the cost of the mefloquine regimen, the decrease in the number of travellers without malaria chemoprophylaxis in the reimbursement strategy. CONCLUSIONS: This study suggests that a reimbursement of 80% of the cost of the cheapest effective malaria chemoprophylaxis (mefloquine) for travellers from Switzerland to West Africa is highly effective in terms of malaria cases averted and is cost effective to the Swiss health system. These data are relevant to discussions about the cost effectiveness of malaria chemoprophylaxis reimbursement for vulnerable groups such as those visiting friends and relatives who have the highest risk of malaria, who are least likely to use chemoprophylaxis

    The functional maturation of M cells is dramatically reduced in the Peyer's patches of aged mice

    Get PDF
    The transcytosis of antigens across the follicle-associated epithelium (FAE) of Peyer's patches by microfold cells (M cells) is important for the induction of efficient immune responses to mucosal antigens. The mucosal immune response is compromised by ageing, but effects on M cells were unknown. We show that M-cell density in the FAE of aged mice was dramatically reduced. As a consequence, aged Peyer's patches were significantly deficient in their ability to transcytose particulate lumenal antigen across the FAE. Ageing specifically impaired the expression of Spi-B and the downstream functional maturation of M cells. Ageing also dramatically impaired C-C motif chemokine ligand 20 expression by the FAE. As a consequence, fewer B cells were attracted towards the FAE, potentially reducing their ability to promote M-cell maturation. Our study demonstrates that ageing dramatically impedes the functional maturation of M cells, revealing an important ageing-related defect in the mucosal immune system's ability to sample lumenal antigens

    M cell-depletion blocks oral prion disease pathogenesis

    Get PDF
    Many prion diseases are orally acquired. Our data show that after oral exposure, early prion replication upon follicular dendritic cells (FDC) in Peyer's patches is obligatory for the efficient spread of disease to the brain (termed neuroinvasion). For prions to replicate on FDC within Peyer's patches after ingestion of a contaminated meal, they must first cross the gut epithelium. However, the mechanism through which prions are conveyed into Peyer's patches is uncertain. Within the follicle-associated epithelium overlying Peyer's patches are microfold cells (M cells), unique epithelial cells specialized for the transcytosis of particles. We show that following M cell-depletion, early prion accumulation upon FDC in Peyer's patches is blocked. Furthermore, in the absence of M cells at the time of oral exposure, neuroinvasion and disease development are likewise blocked. These data suggest M cells are important sites of prion uptake from the gut lumen into Peyer's patches

    Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy

    Get PDF
    The CI and CI-like chondrites provide a record of aqueous alteration in the early solar system. However, the CI-like chondrites differ in having also experienced a late stage period of thermal metamorphism. In order to constrain the nature and extent of the aqueous and thermal alteration, we have investigated the bulk mineralogy and abundance of H2O in the CI and CI-like chondrites using thermogravimetric analysis and infrared spectroscopy. The CI chondrites Ivuna and Orgueil show significant mass loss (28.5–31.8 wt.%) upon heating to 1000 °C due to dehydration and dehydroxylation of abundant phyllosilicates and Fe-(oxy)hydroxides and the decomposition of Fe-sulphides, carbonates and organics. Infrared spectra for Ivuna and Orgueil have a prominent 3-μm feature due to bound −OH/H2O in phyllosilicates and Fe-(oxy)hydroxides and only a minor 11-μm feature from anhydrous silicates. These characteristics are consistent with previous studies indicating that the CI chondrites underwent near-complete aqueous alteration. Similarities in the total abundance of H2O and 3 μm/11 μm ratio suggest that there is no difference in the relative degree of hydration experienced by Ivuna and Orgueil. In contrast, the CI-like chondrites Y-82162 and Y-980115 show lower mass loss (13.8–18.8 wt.%) and contain >50 % less H2O than the CI chondrites. The 3-μm feature is almost absent from spectra of Y-82162 and Y-980115 but the 11-μm feature is intense. The CI-like chondrites experienced thermal metamorphism at temperatures >500 °C that initially caused dehydration and dehydroxylation of phyllosilicates before partial recrystallization back into anhydrous silicates. The surfaces of many C-type asteroids were probably heated through impact metamorphism and/or solar radiation, so thermally altered carbonaceous chondrites are likely good analogues for samples that will be returned by the Hayabusa-2 and OSIRIS-REx missions

    Competing charge transfer pathways at the photosystem II-electrode interface.

    Get PDF
    The integration of the water-oxidation enzyme photosystem II (PSII) into electrodes allows the electrons extracted from water oxidation to be harnessed for enzyme characterization and to drive novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here we carried out protein-film photoelectrochemistry using spinach and Thermosynechococcus elongatus PSII, and we identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway. This undesirable pathway occurs as a result of photo-induced O2 reduction occurring at the chlorophyll pigments and is promoted by the embedment of PSII in an electron-conducting fullerene matrix, a common strategy for enzyme immobilization. Anaerobicity helps to recover the PSII photoresponse and unmasks the onset potentials relating to the QA/QB charge transfer process. These findings impart a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E. Reisner), the U.K. Biology and Biotechnological Sciences Research Council (BB/K010220/1 to E. Reisner), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z.). N.P. was supported by the Winton Fund for the Physics of Sustainability. E. Romero. and R.v.G. were supported by the VU University Amsterdam, the Laserlab-Europe Consortium, the TOP grant (700.58.305) from the Foundation of Chemical Sciences part of NWO, the Advanced Investigator grant (267333, PHOTPROT) from the European Research Council, and the EU FP7 project PAPETS (GA 323901). R.v.G. gratefully acknowledges his `Academy Professor' grant from the Royal Netherlands Academy of Arts and Sciences (KNAW). We would also like to thank Miss Katharina Brinkert and Prof A. William Rutherford for a sample of T. elongatus PSII, and H. v. Roon for preparation of the spinach PSII samples

    Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium

    Get PDF
    The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer’s patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady-state and during aging; molecules expressed on M cells which appear to be used as “immunosurveillance” receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines

    A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set

    Full text link
    We present a sample-variance-limited measurement of the temperature power spectrum (TTTT) of the cosmic microwave background (CMB) using observations of a  ⁣1500deg2\sim\! 1500 \,\mathrm{deg}^2 field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range 750<3000750 \leq \ell < 3000. We combine this TTTT measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 TT/TE/EETT/TE/EE data set. This is the first analysis to present cosmological constraints from SPT TTTT, TETE, and EEEE power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for Λ\LambdaCDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra ALA_\mathrm{L}, the effective number of neutrino species NeffN_{\mathrm{eff}}, the primordial helium abundance YPY_{\mathrm{P}}, and the baryon clumping factor due to primordial magnetic fields bb. We find that the SPT-3G 2018 T/TE/EET/TE/EE data are well fit by Λ\LambdaCDM with a probability-to-exceed of 15%15\%. For Λ\LambdaCDM, we constrain the expansion rate today to H0=68.3±1.5kms1Mpc1H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} and the combined structure growth parameter to S8=0.797±0.042S_8 = 0.797 \pm 0.042. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within <1σ<1\,\sigma of each other. (abridged)Comment: 35 Pages, 17 Figures, 11 Table
    corecore