1,312 research outputs found
Adiabatic two-qubit gates in capacitively coupled quantum dot hybrid qubits
The ability to tune qubits to flat points in their energy dispersions ("sweet
spots") is an important tool for mitigating the effects of charge noise and
dephasing in solid-state devices. However, the number of derivatives that must
be simultaneously set to zero grows exponentially with the number of coupled
qubits, making the task untenable for as few as two qubits. This is a
particular problem for adiabatic gates, due to their slower speeds. Here, we
propose an adiabatic two-qubit gate for quantum dot hybrid qubits, based on the
tunable, electrostatic coupling between distinct charge configurations. We
confirm the absence of a conventional sweet spot, but show that controlled-Z
(CZ) gates can nonetheless be optimized to have fidelities of 99% for a
typical level of quasistatic charge noise (1
eV). We then develop the concept of a dynamical sweet spot (DSS), for
which the time-averaged energy derivatives are set to zero, and identify a
simple pulse sequence that achieves an approximate DSS for a CZ gate, with a
5 improvement in the fidelity. We observe that the results depend on
the number of tunable parameters in the pulse sequence, and speculate that a
more elaborate sequence could potentially attain a true DSS.Comment: 14 pages, 9 figure
Fabrication of salt–hydrogel marbles and hollow-shell microcapsules by an aerosol gelation technique
We designed a new method for preparation of liquid marbles by using hydrophilic particles. Salt–hydrogel marbles were prepared by atomising droplets of hydrogel solution in a cold air column followed by rolling of the collected hydrogel microbeads in a bed of micrometre sized salt particles. Evaporation of the water from the resulting salt marbles with a hydrogel core yielded hollow-shell salt microcapsules. The method is not limited to hydrophilic particles and could potentially be also applied to particles of other materials, such as graphite, carbon black, silica and others. The structure and morphology of the salt–hydrogel marbles were analysed by SEM and their particle size distributions were measured. We also tested the dissolution times of the dried salt marbles and compared them with those of table salt samples under the same conditions. The high accessible surface area of the shell of salt microcrystals allows a faster initial release of salt from the hollow-shell salt capsules upon their dissolution in water than from the same amount of table salt. The results suggest that such hollow-shell particles could find applications as a table salt substitute in dry food products and salt seasoning formulations with reduced salt content without the loss of saltiness
Tight-binding study of structure and vibrations of amorphous silicon
We present a tight-binding calculation that, for the first time, accurately
describes the structural, vibrational and elastic properties of amorphous
silicon. We compute the interatomic force constants and find an unphysical
feature of the Stillinger-Weber empirical potential that correlates with a much
noted error in the radial distribution function associated with that potential.
We also find that the intrinsic first peak of the radial distribution function
is asymmetric, contrary to usual assumptions made in the analysis of
diffraction data. We use our results for the normal mode frequencies and
polarization vectors to obtain the zero-point broadening effect on the radial
distribution function, enabling us to directly compare theory and a high
resolution x-ray diffraction experiment
Precise Tight-binding Description of the Band Structure of MgB2
We present a careful recasting of first-principles band structure
calculations for MgB2 in a non-orthogonal sp-tight-binding (TB) basis. Our TB
results almost exactly reproduce our full potential linearized augmented plane
wave results for the energy bands, the densities of states and the total
energies. Our procedure generates transferable Slater-Koster parameters which
should be useful for other studies of this important material.Comment: REVTEX, 2 Encapsulated PostScript Figure
Anomalous increase in nematic-isotropic transition temperature in dimer molecules induced by magnetic field
We have determined the nematic-isotropic transition temperature as a function of applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15K when subjected to 22T magnetic field. The increase is conjectured to be caused by a magnetic field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers
Dynamical properties of Au from tight-binding molecular-dynamics simulations
We studied the dynamical properties of Au using our previously developed
tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K
were determined by computing the dynamical-matrix using a supercell approach.
In addition, we performed molecular-dynamics simulations at various
temperatures to obtain the temperature dependence of the lattice constant and
of the atomic mean-square-displacement, as well as the phonon density-of-states
and phonon-dispersion curves at finite temperature. We further tested the
transferability of the model to different atomic environments by simulating
liquid gold. Whenever possible we compared these results to experimental
values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical
Review
Adubação verde com espécies leguminosas nas entrelinhas de coqueiros cultivados na região dos Tabuleiros Costeiros de Alagoas.
O objetivo deste trabalho foi avaliar o potencial de produção de biomassa seca (raízes e parte aérea) e os teores de macronutrientes em três espécies de leguminosas (feijão de porco, Crotalaria juncea e guandu comum) cultivadas nas entrelinhas de um coqueiral em fase produtiva situado nos Tabuleiros Costeiros do Estado de Alagoas. O experimento foi conduzido em área particular no Município de Coruripe/AL, sendo avaliadas três espécies de leguminosas (Canavalia ensiformis, Crotalaria juncea e Cajanus cajan) cultivadas nas entrelinhas de plantio de um coqueiral jovem. A produção de biomassa seca total do feijão de porco foi de 8,55 t/ha, correspondente ao aporte de 112,4 Kg de nitrogênio por hectare. Para a Crotalaria juncea, a produção de biomassa seca foi de 8,04 e o aporte de Nitrogênio foi de 112,8 Kg/ha de N. No caso do Guandu comum, a produção da biomassa seca foi de 8,02 e o aporte de nitrogênio de 149,3 Kg/ha de N. Este alto aporte de N pela parte aérea do guandu comum ocorreu devido à elevada concentração de nitrogênio nos seus talos e folhas (20,24%)
Thermal Stabilization of the HCP Phase in Titanium
We have used a tight-binding model that is fit to first-principles
electronic-structure calculations for titanium to calculate quasi-harmonic
phonons and the Gibbs free energy of the hexagonal close-packed (hcp) and omega
crystal structures. We show that the true zero-temperature ground-state is the
omega structure, although this has never been observed experimentally at normal
pressure, and that it is the entropy from the thermal population of phonon
states which stabilizes the hcp structure at room temperature. We present the
first completely theoretical prediction of the temperature- and
pressure-dependence of the hcp-omega phase transformation and show that it is
in good agreement with experiment. The quasi-harmonic approximation fails to
adequately treat the bcc phase because the zero-temperature phonons of this
structure are not all stable
Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface
Electromigration-induced flow of islands and voids on the Cu(001) surface is
studied at the atomic scale. The basic drift mechanisms are identified using a
complete set of energy barriers for adatom hopping on the Cu(001) surface,
combined with kinetic Monte Carlo simulations. The energy barriers are
calculated by the embedded atom method, and parameterized using a simple model.
The dependence of the flow on the temperature, the size of the clusters, and
the strength of the applied field is obtained. For both islands and voids it is
found that edge diffusion is the dominant mass-transport mechanism. The rate
limiting steps are identified. For both islands and voids they involve
detachment of atoms from corners into the adjacent edge. The energy barriers
for these moves are found to be in good agreement with the activation energy
for island/void drift obtained from Arrhenius analysis of the simulation
results. The relevance of the results to other FCC(001) metal surfaces and
their experimental implications are discussed.Comment: 9 pages, 13 ps figure
- …
