483 research outputs found

    Resonances in Ferromagnetic Gratings Detected by Microwave Photoconductivity

    Full text link
    We investigate the impact of microwave excited spin excitations on the DC charge transport in a ferromagnetic (FM) grating. We observe both resonant and nonresonant microwave photoresistance. Resonant features are identified as the ferromagnetic resonance (FMR) and ferromagnetic antiresonance (FMAR). A macroscopic model based on Maxwell and Landau-Lifschitz equations reveals the macroscopic nature of the FMAR. The experimental approach and results provide new insight in the interplay between photonic, spintronic, and charge effects in FM microstructures.Comment: 4 pages, 4 figure

    Quantized spin excitations in a ferromagnetic microstrip from microwave photovoltage measurements

    Full text link
    Quantized spin excitations in a single ferromagnetic microstrip have been measured using the microwave photovoltage technique. Several kinds of spin wave modes due to different contributions of the dipole-dipole and the exchange interactions are observed. Among them are a series of distinct dipole-exchange spin wave modes, which allow us to determine precisely the subtle spin boundary condition. A comprehensive picture for quantized spin excitations in a ferromagnet with finite size is thereby established. The dispersions of the quantized spin wave modes have two different branches separated by the saturation magnetization.Comment: 4 pages, 3 figure

    Microwave photovoltage and photoresistance effects in ferromagnetic microstrips

    Full text link
    We investigate the dc electric response induced by ferromagnetic resonance in ferromagnetic Permalloy (Ni80Fe20) microstrips. The resulting magnetization precession alters the angle of the magnetization with respect to both dc and rf current. Consequently the time averaged anisotropic magnetoresistance (AMR) changes (photoresistance). At the same time the time-dependent AMR oscillation rectifies a part of the rf current and induces a dc voltage (photovoltage). A phenomenological approach to magnetoresistance is used to describe the distinct characteristics of the photoresistance and photovoltage with a consistent formalism, which is found in excellent agreement with experiments performed on in-plane magnetized ferromagnetic microstrips. Application of the microwave photovoltage effect for rf magnetic field sensing is discussed.Comment: 16 pages, 15 figure

    Anomalous magnetotransport and cyclotron resonance of high mobility magnetic 2DHGs in the quantum Hall regime

    Full text link
    Low temperature magnetotransport measurements and far infrared transmission spectroscopy are reported in molecular beam epitaxial grown two-dimensional hole systems confined in strained InAs quantum wells with magnetic impurities in the channel. The interactions of the free holes spin with the magnetic moment of 5/2 provided by manganese features intriguing localization phenomena and anomalies in the Hall and the quantum Hall resistance. In magnetic field dependent far infrared spectroscopy measurements well pronounced cyclotron resonance and an additional resonance are found that indicates an anticrossing with the cyclotron resonance

    Space-time evolution of hadronization

    Get PDF
    Beside its intrinsic interest for the insights it can give into color confinement, knowledge of the space-time evolution of hadronization is very important for correctly interpreting jet-quenching data in heavy ion collisions and extracting the properties of the produced medium. On the experimental side, the cleanest environment to study the space-time evolution of hadronization is semi-inclusive Deeply Inelastic Scattering on nuclear targets. On the theoretical side, 2 frameworks are presently competing to explain the observed attenuation of hadron production: quark energy loss (with hadron formation outside the nucleus) and nuclear absorption (with hadronization starting inside the nucleus). I discuss recent observables and ideas which will help to distinguish these 2 mechanisms and to measure the time scales of the hadronization process.Comment: 6 pages, 4 figures. Based on talks given at "Hot Quarks 2006", Villasimius, Italy, May 15-20, 2006, and at the "XLIV internataional winter meeting on nuclear physics", Bormio, Italy, Jan 29 - Feb 5, 2006. To appear in Eur.Phys.J.

    In-Situ Nuclear Magnetic Resonance Investigation of Strain, Temperature, and Strain-Rate Variations of Deformation-Induced Vacancy Concentration in Aluminum

    Get PDF
    Critical strain to serrated flow in solid solution alloys exhibiting dynamic strain aging (DSA) or Portevin–LeChatelier effect is due to the strain-induced vacancy production. Nuclear magnetic resonance (NMR) techniques can be used to monitor in situ the dynamical behavior of point and line defects in materials during deformation, and these techniques are nondestructive and noninvasive. The new CUT-sequence pulse method allowed an accurate evaluation of the strain-enhanced vacancy diffusion and, thus, the excess vacancy concentration during deformation as a function of strain, strain rate, and temperature. Due to skin effect problems in metals at high frequencies, thin foils of Al were used and experimental results correlated with models based on vacancy production through mechanical work (vs thermal jogs), while in situ annealing of excess vacancies is noted at high temperatures. These correlations made it feasible to obtain explicit dependencies of the strain-induced vacancy concentration on test variables such as the strain, strain rate, and temperature. These studies clearly reveal the power and utility of these NMR techniques in the determination of deformation-induced vacancies in situ in a noninvasive fashion.

    Hard Photodisintegration of a Proton Pair

    Get PDF
    We present a study of high energy photodisintegration of proton-pairs through the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s-11 scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photodisintegration. For photon energies below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration.Comment: 7 pages, 3 figures, for submission to Phys. Lett.

    A Bayesian analysis of pentaquark signals from CLAS data

    Get PDF
    We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+\Theta^{+} pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+\Theta^{+}. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.Comment: 5 pages, 3 figure
    • …
    corecore