We investigate the impact of microwave excited spin excitations on the DC
charge transport in a ferromagnetic (FM) grating. We observe both resonant and
nonresonant microwave photoresistance. Resonant features are identified as the
ferromagnetic resonance (FMR) and ferromagnetic antiresonance (FMAR). A
macroscopic model based on Maxwell and Landau-Lifschitz equations reveals the
macroscopic nature of the FMAR. The experimental approach and results provide
new insight in the interplay between photonic, spintronic, and charge effects
in FM microstructures.Comment: 4 pages, 4 figure