56 research outputs found

    On the origin of the neutral hydrogen supershells: the ionized progenitors and the limitations of the multiple supernovae hypothesis

    Full text link
    Here we address the question whether the ionized shells associated with giant HII regions can be progenitors of the larger HI shell-like objects found in the Milky Way and other spiral and dwarf irregular galaxies. We use for our analysis a sample of 12 HII shells presented recently by Rela\~no et al. (2005, 2007). We calculate the evolutionary tracks that these shells would have if their expansion is driven by multiple supernovae explosions from the parental stellar clusters. We find, contrary to Rela\~no et al. (2007), that the evolutionary tracks of their sample HII shells are inconsistent with the observed parameters of the largest and most massive neutral hydrogen supershells. We conclude that HII shells found inside giant HII regions may represent the progenitors of small or intermediate HI shells, however they cannot evolve into the largest HI objects unless, aside from the multiple supernovae explosions, an additional energy source contributes to their expansion.Comment: Accepted for publication in ApJ, tentatively scheduled for the ApJ July 1, 2008, v681n1 issue. 19 pages, 4 figure

    To the problems of modeling the brain ischemia in small animals

    Get PDF
    In the review article the problems of modeling cerebral ischemia in small mammals are consecrated. The advantages of experimental studies that are based on the similarity of the blood circulation of the brain in humans and animals are indicated. Classification of experimental models for the study of acute and chronic disorders of cerebral circulation, mechanisms of their development and preclinical approbation of new drugs is given. The authors indicate that all experimental models of brain ischemia can be divided into two groups: to study risk factors and pathophysiological studies of brain ischemia. And in the second case, the models of focal and global ischemia are described. In conclusion, the authors point out the difficulties and shortcomings of certain methods of ischemia reproduction, which await researchers to solve the above problems

    The Galactic Distribution of Large HI Shells

    Full text link
    We report the discovery of nineteen new HI shells in the Southern Galactic Plane Survey (SGPS). These shells, which range in radius from 40 pc to 1 kpc, were found in the low resolution Parkes portion of the SGPS dataset, covering Galactic longitudes l=253 deg to l=358 deg. Here we give the properties of individual shells, including positions, physical dimensions, energetics, masses, and possible associations. We also examine the distribution of these shells in the Milky Way and find that several of the shells are located between the spiral arms of the Galaxy. We offer possible explanations for this effect, in particular that the density gradient away from spiral arms, combined with the many generations of sequential star formation required to create large shells, could lead to a preferential placement of shells on the trailing edges of spiral arms. Spiral density wave theory is used in order to derive the magnitude of the density gradient behind spiral arms. We find that the density gradient away from spiral arms is comparable to that out of the Galactic plane and therefore suggest that this may lead to exaggerated shell expansion away from spiral arms and into interarm regions.Comment: 25 pages, 20 embedded EPS figures, uses emulateapj.sty, to appear in the Astrophysical Journa

    Two Large HI Shells in the Outer Galaxy near l=279 degrees

    Full text link
    As part of a survey of HI 21-cm emission in the Southern Milky Way, we have detected two large shells in the interstellar neutral hydrogen near l=279 deg. The center velocities are +36 and +59 km/s, which puts the shells at kinematic distances of 7 and 10 kpc. The larger shell is about 610 pc in diameter and very empty, with density contrast of at least 15 between the middle and the shell walls. It has expansion velocity of about 20 km/s and swept up mass of several million solar masses. The energy indicated by the expansion may be as high as 2.4 X 10^53 ergs. We estimate its age to be 15 to 20 million years. The smaller shell has diameter of about 400 pc, expansion velocity about 10 km/s and swept up mass of about 10^6 solar masses. Morphologically both regions appear to be shells, with high density regions mostly surrounding the voids, although the first appears to have channels of low density which connect with the halo above and below the HI layer. They lie on the edge of the Carina arm, which suggests that they may be expanding horizontally into the interarm region as well as vertically out of the disk. If this interpretation is correct, this is the first detection of an HI chimney which has blown out of both sides of the disk.Comment: 21 pages, 14 jpeg figures, accepted for publication in A

    Environment, Ram Pressure, and Shell Formation in HoII

    Get PDF
    Neutral hydrogen VLA D-array observations of the dwarf irregular galaxy HoII, a prototype galaxy for studies of shell formation, are presented. HI is detected to radii over 16' or 4 R_25, and M_HI=6.44x10^8 M_sun. The total HI map has a comet-like appearance suggesting that HoII is affected by ram pressure from an intragroup medium (IGM). A rotation curve corrected for asymmetric drift was derived and an analysis of the mass distribution yields a total mass 6.3x10^9 M_sun, of which about 80% is dark. HoII lies northeast of the M81 group's core, along with Kar52 (M81dwA) and UGC4483. No signs of interaction are observed and it is argued that HoII is part of the NGC2403 subgroup, infalling towards M81. A case is made for ram pressure stripping and an IGM in the M81 group. Stripping of the disk outer parts would require an IGM density n_IGM>=4.0x10^-6 atoms/cm^3 at the location of HoII. This corresponds to 1% of the virial mass of the group uniformly distributed over a volume just enclosing HoII and is consistent with the X-ray properties of small groups. It is argued that existing observations of HoII do not support self-propagating star formation scenarios, whereby the HI holes and shells are created by supernova explosions and stellar winds. Many HI holes are located in low surface density regions of the disk, where no star formation is expected or observed. Ram pressure has the capacity to enlarge preexisting holes and lower their creation energies, helping to bridge the gap between the observed star formation rate and that required to create the holes. (abridged)Comment: 43 pages, including 7 figures. 4 figures available as JPEG only. Complete manuscript including full resolution figures available at http://www.strw.leidenuniv.nl/~bureau/pub_list.html . Accepted for publication in The Astronomical Journa

    Draco, a flawless dwarf galaxy

    Full text link
    The Draco dwarf spheroidal galaxy (dSph), with its apparent immense mass to light ratio and compact size, holds many clues to the nature of the enigmatic dark matter. Here we present deep photometric studies of this dwarf galaxy, undertaken with the MegaCam Camera at the Canada-France-hawaii Telescope, the Wide Field Camera at the Isaac Newton Telescope and the Wide-Field and Planetary Camera on board the Hubble Space Telescope. The new photometric data cover the entirety of the galaxy, and reach i=24.5 at 50% completeness, significantly deeper than previous panoramic studies, allowing searches for tidal disturbances of much lower surface brightness than has been possible before. With these improved statistics, we find no evidence for asymmetric disturbances or tidal tails that possess more than 3% of the stars found within the centre of the galaxy. We find that the central stellar density, as probed by the HST data, rises into the central 0.5'. Uncertainties in the position of the centroid of the galaxy do not allow us to determine whether the apparent flattening of the profile interior to 0.5' is reliable or not. Draco is therefore a flawless dwarf galaxy, featureless and apparently unaffected by Galactic tides.Comment: 13 pages, 16 figures, accepted for publication in MNRA

    Gamma rays from dark matter annihilation in the Draco and observability at ARGO

    Full text link
    The CACTUS experiment recently observed a gamma ray excess above 50 GeV from the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is dark matter dominated the gamma rays may be generated through dark matter annihilation in the Draco halo. In the framework of the minimal supersymmetric extension of the standard model we explore the parameter space to account for the gamma ray signals at CACTUS. We find that the neutralino mass is constrained to be approximately in the range between 100 GeV ~ 400 GeV and a sharp central cuspy of the dark halo profile in Draco is necessary to explain the CACTUS results. We then discuss further constraints on the supersymmetric parameter space by observations at the ground based ARGO detector. It is found that the parameter space can be strongly constrained by ARGO if no excess from Draco is observed above 100 GeV.Comment: 15 pages, 4 figure

    Dark Matter and the CACTUS Gamma-Ray Excess from Draco

    Get PDF
    The CACTUS atmospheric Cherenkov telescope collaboration recently reported a gamma-ray excess from the Draco dwarf spheroidal galaxy. Draco features a very low gas content and a large mass-to-light ratio, suggesting as a possible explanation annihilation of weakly interacting massive particles (WIMPs) in the Draco dark-matter halo. We show that with improved angular resolution, future measurements can determine whether the halo is cored or cuspy, as well as its scale radius. We find the relevant WIMP masses and annihilation cross sections and show that supersymmetric models can account for the required gamma-ray flux. The annihilation cross section range is found to be not compatible with a standard thermal relic dark-matter production. We compute for these supersymmetric models the resulting Draco gamma-ray flux in the GLAST energy range and the rates for direct neutralino detection and for the flux of neutrinos from neutralino annihilation in the Sun. We also discuss the possibility that the bulk of the signal detected by CACTUS comes from direct WIMP annihilation to two photons and point out that a decaying-dark-matter scenario for Draco is not compatible with the gamma-ray flux from the Galactic center and in the diffuse gamma-ray background.Comment: 24 pages, 10 figures; version accepted for publication in JCA

    К проблемам моделирования ишемии головного мозга у мелких животных

    Get PDF
    In the review article the problems of modeling cerebral ischemia in small mammals are consecrated. The advantages of experimental studies that are based on the similarity of the blood circulation of the brain in humans and animals are indicated. Classification of experimental models for the study of acute and chronic disorders of cerebral circulation, mechanisms of their development and preclinical approbation of new drugs is given. The authors indicate that all experimental models of brain ischemia can be divided into two groups: to study risk factors and pathophysiological studies of brain ischemia. And in the second case, the models of focal and global ischemia are described. In conclusion, the authors point out the difficulties and shortcomings of certain methods of ischemia reproduction, which await researchers to solve the above problems.В обзорной статье освещены проблемы моделирования ишемии головного мозга у мелких млекопитающих. Показаны преимущества экспериментальных исследований, основанных на сходстве кровообращения головного мозга у человека и животных. Дана классификация экспериментальных моделей для изучения острых и хронических нарушений мозгового кровообращения, механизмов их развития и доклинической апробации новых лекарственных препаратов. Авторы указывают, что все экспериментальные модели ишемии головного мозга можно разделить на две группы: для изучения факторов риска и патофизиологических исследований ишемии головного мозга. Во втором случае описываются модели очаговой и глобальной ишемии. В заключение авторы указывают на трудности и недостатки некоторых методов воспроизводства ишемии, которые ждут исследователей для решения вышеуказанных проблем

    Observational Manifestations of the First Protogalaxies in the 21 cm Line

    Full text link
    The absorption properties of the first low-mass protogalaxies (mini-halos) forming at high redshifts in the 21-cm line of atomic hydrogen are considered. The absorption properties of these protogalaxies are shown to depend strongly on both their mass and evolutionary status. The optical depths in the line reach \sim0.1-0.2 for small impact parameters of the line of sight. When a protogalaxy being compressed, the influence of gas accretion can be seen manifested in a non-monotonic frequency dependence of the optical depth. The absorption characteristics in the 21-cm line are determined by the thermal and dynamical evolution of the gas in protogalaxies. Since the theoretical line width in the observer's reference frame is 1-6 kHz and the expected separation between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure
    corecore