293 research outputs found

    Analysis of Inter-Chip Communication Patterns on Multi-Core Distributed Shared-Memory Computers

    Get PDF
    Multi-core multi-socket distributed shared-memory com- puters (DSM computers, for short) have become an impor- tant node architecture in scientific computing as they provide substantial computational capacity with relatively low space and power requirements. Compared to conventional computer networks, inter-chip networks used in DSM computers feature higher bandwidth, lower latency and tighter integration with the CPU. The inter-chip network is a shared resource among the user application and many other services, which can lead to consid- erable variation of execution times of identical communication tasks. In this work, we explore traffic patterns resulting from MPI collective communication primitives and investigate the ques- tion whether inter-chip link load is a reliable indicator and predictor for the execution time of collective communication primitives on a DSM computer. Our experiments on a Sun Fire X4600 M2 DSM computer with 32 cores (eight quad-core CPUs) indicate that specific single link loads are positively correlated with the execution time of MPI ALLREDUCE. Ob- serving patterns over multiple links allows refinement of the single-link observation

    Role of intraband dynamics in the generation of circularly polarized high harmonics from solids

    No full text
    Recent studies have demonstrated that the polarization states of high harmonics from solids can differ from those of the driving pulses. To gain insights on the microscopic origin of this behavior, we perform one-particle intraband-only calculations and reproduce some of the most striking observations. For instance, our calculations yield circularly polarized harmonics from elliptically polarized pulses that sensitively depend on the driving conditions. Furthermore, we perform experiments on ZnS and find characteristics partly similar to those reported from silicon. Comparison to our intraband-only calculations shows reasonable qualitative agreement for a below-band-gap harmonic. We show that intraband dynamics predict depolarization effects that gain significance with higher field strengths and we observe such effects in the experimental data. For harmonics above the band gap, interband dynamics become important and the high-harmonic response to elliptical excitation looks systematically different. Our work proposes a method to distinguish between different high-harmonic generation mechanisms and it could pave the way to compact solid-state high-harmonic sources with controllable polarization states

    Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition

    Get PDF
    Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions

    Deconstructing the Late Phase of Vimentin Assembly by Total Internal Reflection Fluorescence Microscopy (TIRFM)

    Get PDF
    Quantitative imaging of intermediate filaments (IF) during the advanced phase of the assembly process is technically difficult, since the structures are several µm long and therefore they exceed the field of view of many electron (EM) or atomic force microscopy (AFM) techniques. Thereby quantitative studies become extremely laborious and time-consuming. To overcome these difficulties, we prepared fluorescently labeled vimentin for visualization by total internal reflection fluorescence microscopy (TIRFM). In order to investigate if the labeling influences the assembly properties of the protein, we first determined the association state of unlabeled vimentin mixed with increasing amounts of labeled vimentin under low ionic conditions by analytical ultracentrifugation. We found that bona fide tetrameric complexes were formed even when half of the vimentin was labeled. Moreover, we demonstrate by quantitative atomic force microscopy and electron microscopy that the morphology and the assembly properties of filaments were not affected when the fraction of labeled vimentin was below 10%. Using fast frame rates we observed the rapid deposition of fluorescently labeled IFs on glass supports by TIRFM in real time. By tracing their contours, we have calculated the persistence length of long immobilized vimentin IFs to 1 µm, a value that is identical to those determined for shorter unlabeled vimentin. These results indicate that the structural properties of the filaments were not affected significantly by the dye. Furthermore, in order to analyze the late elongation phase, we mixed long filaments containing either Alexa 488- or Alexa 647-labeled vimentin. The ‘patchy’ structure of the filaments obtained unambiguously showed the elongation of long IFs through direct end-to-end annealing of individual filaments

    An Elementary Quantum Network of Single Atoms in Optical Cavities

    Full text link
    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way: by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in independent laboratories. The created nonlocal state is manipulated by local qubit rotation. This efficient cavity-based approach to quantum networking is particularly promising as it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.Comment: 8 pages, 5 figure

    High-Energy Neutrinos from Photomeson Processes in Blazars

    Get PDF
    An important radiation field for photomeson neutrino production in blazars is shown to be the radiation field external to the jet. Assuming that protons are accelerated with the same power as electrons and injected with a -2 number spectrum, we predict that km^2 neutrino telescopes will detect about 1-to-several neutrinos per year from flat spectrum radio quasars (FSRQs) such as 3C 279. The escaping high-energy neutron and photon beams transport inner jet energy far from the black-hole engine, and could power synchrotron X-ray jets and FR II hot spots and lobes.Comment: revised paper (minor revisions), accepted for publication in PR

    Propagation of ultra-high energy protons in the nearby universe

    Get PDF
    We present a new calculation of the propagation of protons with energies above 101910^{19} eV over distances of up to several hundred Mpc. The calculation is based on a Monte Carlo approach using the event generator SOPHIA for the simulation of hadronic nucleon-photon interactions and a realistic integration of the particle trajectories in a random extragalactic magnetic field. Accounting for the proton scattering in the magnetic field affects noticeably the nucleon energy as a function of the distance to their source and allows us to give realistic predictions on arrival energy, time delay, and arrival angle distributions and correlations as well as secondary particle production spectra.Comment: 12 pages, 9 figures, ReVTeX. Physical Review D, accepte

    Dynamical Autler-Townes control of a phase qubit

    Get PDF
    Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this work we investigate experimentally the time evolution of Autler-Townes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition. A three-level model that includes independently determined parameters for relaxation and dephasing gives excellent agreement with the experiment. The results demonstrate that the qubit can be used as a ON/OFF switch with 100 ns operating time-scale for the reflection/transmission of photons coming from an applied probe microwave tone. The ON state is realized when the control tone is sufficiently strong to generate an Autler-Townes doublet, suppressing the absorption of the probe tone photons and resulting in a maximum of transmission.Comment: 8 pages, 8 figure
    corecore